• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

An investigation to see whether the concentration of Sucrose effects the amount of Carbon Dioxide released from the respiration in yeast cells

Extracts from this document...

Introduction

An investigation to see whether the concentration of Sucrose effects the amount of Carbon Dioxide released from the respiration in yeast cells Aim: The aim of this investigation is to discover whether the volume of carbon dioxide released from the respiration of yeast is effected by the concentration of sucrose solution that the yeast uses up as a raw material in it's respiration. Prediction: I predict that as we increase the concentration of the sucrose solution, the quicker the reaction will occur. Also, the greater the concentration the more carbon dioxide will be released, because there will be more sugar in the solution with the greater % and so more raw material which is the limiting factor, this would result in more respiration occurring. I could also predict that if the concentration of the sucrose solution is doubled, the amount of carbon dioxide produced by the larger concentration would be twice as much as the smaller concentration has produced within a given time limit. Hypothesis: When yeast is added to a sugar solution (in this case sucrose) a reaction occurs. This reaction is called fermentation and is widely used throughout industry. Yeast is a living cell and so it respires. This is why the reaction occurs because the yeast is using the simple sugar in the solution to respire on. The process however, is anaerobic respiration because oxygen isn't a raw material in the reaction. Yeast Glucose Alcohol + carbon dioxide (Ethanol) As can be seen above in the word equation the products of the fermentation are ethanol and carbon dioxide. ...read more.

Middle

From observing the graph it is clear to see that all the lines descend this represents a loss in mass. This mass loss should equal the mass of carbon dioxide released from the experiment because the other product is a liquid and so remains in the container and hence will be accounted for when the experiment is massed. The results can also show that as the concentration rises the overall total mass loss increases; this is the case for the 1%, 5%, 10% and 15% sucrose solutions. The mass lost in the experiment using 20% sucrose solution seems to be the same if not less than the mass lost in the experiment using 15% solution. I have drawn on the graph to identify the overall mass loss more easily. The table below shows accurately the exact overall loss in mass. As I said in my analysis of the graph I thought that the biggest overall mass loss might be noticed in the experiment using 15% sucrose solution. Up until the experiment using the 15% solution the overall mass lost rose as can be seen on both the table below and the graph. This suggests that the optimum % sucrose solution for yeast (at the quantity of yeast we used) to respire on is 15. concetration (%) 1 5 10 15 20 complete mass loss (g) 2.6 6.81 12.16 15.2 14.22 For the % solutions lower than 15% it is clear that there was a lower quantity of sugar that the yeast had the potential to respire on. This is because as we can observe if we increased the amount of sugar in the same volume (increased the % of the solution) ...read more.

Conclusion

So it was a suitable procedure that was carried out. I think that the investigation was very reliable and that the results are gathered and interpreted were enough to base my conclusion upon. Maybe to improve the experiment we could put the five separate experiments into the same water bath ensuring that they are all at the same temperature. However in doing this I'm sure the results would be very similar if not exactly the same. As I said earlier I could extend the investigation by investigating the total mass loss when % concentration solutions above 20% are used; to see whether the overall mass loss increases, decreases, or stays the same when the concentration is above the optimum concentration. I would probably predict that the rate of respiration and amount of respiration occurring would be less than in the 15% sucrose solution because I have found out that as the concentration rises above the optimum concentration the rate of reproduction of the yeast cells decreases, so there will be less respiration occurring as there is less yeast cells. I could keep the same concentration and the same amount of yeast and the variable in this investigation could be the pH or the temperature. I would expect a pattern to emerge with the temperature as enzymes that would breakdown the sugar in the solution would denature and so respiration wouldn't be able to occur because glucose won't be present. The pH would also effect the results as different enzymes have different optimum pH's. Also different amounts of a catalyst could be added, however this would be very difficult. Other possibilities could include the variables being different concentration/quantities of yeast, or different types of sugar solutions at the same concentration. Tom Warren Biology coursework Mr Robinson ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Exchange, Transport & Reproduction section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Exchange, Transport & Reproduction essays

  1. Peer reviewed

    "An investigation into the Respiration of Carbohydrate Substrates by Yeast."

    5 star(s)

    25cm3 of baker's yeast and 25 cm3 of sucrose was mixed together and preheated at the required temperature for 15 minutes in an electronic water-bath. 2. 400cm3 of water was preheated to the same temperature as the yeast using the Bunsen burner.

  2. Peer reviewed

    Effect of Caffeine on the Heart Rate of Daphnia

    3 star(s)

    Due to the fact that caffeine is primarily an antagonist of the central nervous system's receptors for the neurotransmitter adenosine, the bodies of individuals who regularly consume caffeine adapt to the continual presence of the drug by substantially increasing the number of adenosine receptors in the central nervous system.

  1. Rate of Respiration

    A change in pH may disrupt the optimum pH for the extracellular digestive enzymes that are used by the yeast. Hence the substrates cannot bind to the active site and form an enzyme substrate complex, causing the rate of respiration to decrease.

  2. To find out the factors affecting the refractive index of liquid by using different ...

    are isomers (molecules with same molecular formula but different structural and display formula). Their size and shape are similar. Fourthly, the temperature of the solution can also affect the refractive index, as the temperature increase, the refractive index will be lower.

  1. Investigate the effect different concentrations of glucose in a yeast & Glucose solution has ...

    Temperature - When the temperature is high (40?c) the enzymes can perform respiration quickly but if they get to hot then they start to denature. The temperature will also affect kinetic theory because as the particles get hotter the number of reactions increases so more CO2 is produced, but if

  2. The effect of different sucrose concentrations on the growth of yeast.

    I will put the same amount of yeast into each sucrose solution and leave in an incubator for one week. After one week I will take a sample of each, add methylene blue to it to colour the yeast cells and make them easier to see and use a haemocytometer to see how much yeast has grown.

  1. Rate of respiration in Yeast.

    By already having a small molecule sugar in this experiment it makes sense that the small molecule food will use less energy from the yeast therefore allowing it to respire more efficiently. Whereas the large molecule food (Sucrose) will take longer to break down because of its large molecules, this

  2. Design an experiment to investigate the effect of temperature on the movement of a ...

    tubes in it, to ensure that it has heated up to the correct temperature. Also when I put the beetroot into each of my test tubes I will use a thermometer to check that they have heated up to the right temperature.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work