• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Beetroot Experiment.

Extracts from this document...

Introduction

Beetroot Experiment. Introduction: After completing the experiment I will now proceed to draw my results, discussion and evaluation to determine what exactly happened. Table of Results: Temperature ( C) Absorbance (%) fridge 0.26 30 0.08 35 0.15 40 0.14 45 0.18 50 0.21 55 0.23 60 0.25 65 0.38 70 0.41 75 0.46 Discussion: Through observations from the line graph that I have constructed, it is quite certain that there is a general pattern. There is a general steady increase represented by a positive correlation. It shows that as the temperature increases the percentage of absorbance also increases, meaning that more pigment diffuses through the beetroot's cell membrane at higher temperatures. There is one exception, which is the subject that was situated within the fridge as this is clearly an anomaly. The solution that was placed in the fridge does not conform to the general increase, therefore owing to the fact that it is an anomaly. The reason that this is an anomaly is subsequently due to the fact that the beetroot cells were not allowed to work to their optimum, and as the temperature is so cold compared to the other samples, the permeability of the cell membrane was quite high. ...read more.

Middle

This means that as the water flows into the beetroot cells, they become turgid, then as excess water flows into the cells, the cell bursts releasing the pigment into the water. The higher the temperature the faster the water molecules move because they have more kinetic energy thus the process occurs faster and effects more cells. It is worth mentioning that as the temperature increases by every 5 degrees, denaturisation is having more of an impact, as the percentage of absorption in the colorimeter increases. It was important to have washed the beetroot before carrying out the experiment, in order to wash out pigment from the cells that were damaged when using the cork borer and knife. For this experiment to have been more successful then the variables would need to be kept more constant, although this is incredibly difficult to master, so it is not really an option when trying to improve upon the investigation. A good way to help make the experiment more worthwhile is to attempt each temperature several more times to ensure that you get a more reliable result, which you can also work out an average figure. The anomaly was the sample placed in the fridge, which seemed to give a rather large percentage of beetroot pigment concentration, due to the fact that the cell membrane could not work at such a cold temperature, and therefore the pigment was easily diffused. ...read more.

Conclusion

Difference in absorbance (%) fridge 0 30 -0.18 35 0.07 40 -0.1 45 0.04 50 0.03 55 0.02 60 0.02 65 0.13 70 0.03 75 0.05 As you can see there are some distinct similarities betwixt these figures, but also some differences. Excluding the fridge sample and the small error between 35 and 40, you can see that an increase of about 0.02% - 0.03% is common across the board, but there with one exception, and that is the difference between 60 C and 65 C. The difference here is much larger, a clear source of error, but to be quite certain of this, I would have to carry out another test. This concept of error is quite interesting and would be worth having a closer look at. Another matter to take into account is the water baths themselves, the temperature although being measured by a thermometer and a digital reading, it could be for example at a temperature of 35.4 C, but be rounded off to 35 C. This minor judgement will probably have little effect upon the overall result. One of the main sources of error is mostly due to the beetroot itself, they are all cut into relatively the same dimensions, but this could have an effect, due to the idea that if the beetroot is bigger then it has more surface area and will hence release a greater amount of beetroot pigment. DUNCAN BEARD ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Molecules & Cells section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Molecules & Cells essays

  1. Marked by a teacher

    Beetroot Experiment. The purpose of this experiment is to determine the effect of temperature ...

    4 star(s)

    There are certain factors that we need to keep constant. The first is the size of the beetroot, as we are ultimately measuring the diffusion of the pigment out of the cell.

  2. Marked by a teacher

    Investigating the effect of temperature on the movement of pigment through beetroot cell membranes.

    4 star(s)

    more kinetic energy thus meaning the phospholipid molecules move faster than they previously were. This movement creates gaps in the membrane for the betalain pigment to pass through allowing more to diffuse out from a high concentration within the cell to a lower concentration outside of the cell.

  1. Marked by a teacher

    AN INVESTIGATION INTO HOW TEMPERATURE AFFECTS THE PERMEABILITY MEMBRANE OF A BEETROOT.

    3 star(s)

    The lipids found in cell membranes belong to a class known as triglycerides, so called because they have one molecule of glycerol chemically linked to three molecules of fatty acids. Lipids tend to liquefy at high temperatures causing ruptures in the plasma membrane.

  2. Marked by a teacher

    The effect of temperature on the permeability of beetroot membrane

    3 star(s)

    * Using statistical evidence, identify the trend As temperature increase the membrane in the beetroot becomes damaged. Therefore the beetroot membrane becomes more permeable and cannot carry out its function. Therefore as a result the betalain inside the cell begins to seep out through.

  1. Marked by a teacher

    An investigation to examine the effects of temperature on membrane stability in beetroot, by ...

    3 star(s)

    However, these hydrogen bonds are not very strong. They are not actually bonds, but in fact strong attractions. The tertiary structure of a protein refers to the specific 3D shape that the polypeptide chain folds into. Here the R-groups of the amino acids within the polypeptide chain are very important as they are effectively what determine the shape of the protein.

  2. Marked by a teacher

    effect of temperature on beetroot pigment through membrane

    3 star(s)

    - Hair must be tied back, to give a clear view of the working area and away from open fire. Equipment / per temperature points experiment - - 3 x Boiling tube - 2 x 500 cm3 beaker - 2 x Thermometers - 9 x Beetroot disks - 200 cm3

  1. TEMPERATURE ON BEETROOT PERMEABILITY

    And because once a protein is denatured it can no longer be used by the body as it lacks its necessary structure and as the protein function is dependent upon this, it becomes useless, so the diffusion of the betalain pigment remains constant.

  2. Membrane Permeability

    Molecules in a system at a higher temperature will have more energy and will move faster, and hence diffuse faster, than molecules of the same type in a low-temperature system. The size of the molecule also affects how rapidly it will diffuse.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work