• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Elastic constant of a spring.

Extracts from this document...

Introduction

Mohamed Osman.

02/05/2007.

14:30

Elastic constant of a spring.

Planning:

  1. Introduction: The aim of this experiment is to find and measure the elastic constant of a spiral spring.

(b) Apparatus:

  1. Light spiral spring.
  2. A scale pan.
  3. A meter rule.
  4. 2 Clamps and Stands.
  5. 2 Boxes of weight.
  6. Light pointer for spring.
  7. Stop watch.
  1. Method:
  1. Suspend the light spring from the clamp and attach a light pointer to the spring.
  2. Set up a fixed vertical meter rule beside the spring using the clamp and stand.
  3. Attach a scale pan to the spring, and then add suitable weights, noting the reading of the pointer each time.
  4. Do this for about 8 loads on the scale pan.
  5. Then remove each weight, and record the reading of the pointer each time.
...read more.

Middle

When loading

  1. Mass of scale pan = 0.05kg
  2. Zero reading of spring = 140mm.

Mass on scale pan

(kg)

Reading on meter rule

(mm)

Total mass

(kg)

Extension

(mm)

0.00

140

0.05

0

0.05

159

0.10

19

0.10

179

0.15

39

0.15

198

0.20

58

0.20

215

0.25

75

0.25

235

0.30

95

0.30

254

0.35

114

0.35

274

0.40

134

When off loading:

...read more.

Conclusion

  1. Evaluation:
  1. Since I was using plasticine and a pin as a pointer, it was a bit difficult to get a perpendicular horizontal position for the pin to the meter rule.
  2. Also when you add weight on to the scale pan, the spring kept oscillating for some time before coming to rest. I ensured that at all time when I was taking my reading that the spring was at rest, and this made my reading accurate.
  1. Conclusion:

(i)     =      kg per meter extension is the mass hung on the spring per meter extension.

(ii) Since the graph is a straight line passing through the origin, the extension of the spring is directly proportional to the tension in the spring that is Hooke’s law.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Waves & Cosmology section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Waves & Cosmology essays

  1. Measuring spring constant using oscilations of a mass.

    constant and the effective mass that will be a bit different then the value that force/extension data will tell me because I would be carrying out this experiment differently technically and theoretically then the technique that was used to work out the force/extension data and the worked out spring constant form it.

  2. What is the spring constant?

    This is because that the weights may not all be exactly the same and this will reduce the error in the measurements. The same weights will be used to weigh the clamp stand down and to balance it; the same pencil will be used to mark the label; the same

  1. An experiment to investigate and determine how rubber behaves when tension forces are applied ...

    The two graphs that intend to construct are illustrated and labelled below: Apparatus 1. Working surface so that I can conduct my experiment on this and make sure that it is stable otherwise this could affect my end results as the rubber band may behave differently and is easily able to stretch and then compress again.

  2. Study the interference of light using Helium - Neon Diode Laser.

    D d xn = n?D d For the (n-1) the fringe next to the nth fringe, since ? D and d are constant nn-1 = (n-1) ?D d So seperation of fringes, x = xn - x n-1 = ?D/d MEASUREMENT OF WAVELENGTH BY YOUNG'S INTERFERENCE FRINGES A laboratory experiment to measure wavelength by Young's interference fringes is show in Figure 19.8.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work