• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Experiment to measure the enthalpy change of combustion for hexane and methanol

Extracts from this document...

Introduction

TASK 1 (a) Carry out the activity on measuring the enthalpy change of combustion for hexane and methanol and calculate your result. In this experiment i will burn the fuel methanol (this is an alcohol which can be used as an alternative fuel) and arrange the apparatus to get most of the energy transferred to the water. Method * Firstly i will pour 200cm3 of cold water in a copper calorimeter then i will use a thermometer to record the temperature of the water. * By using clamp stands and bosses i will support the calorimeter over the spirit burner containing the methanol fuel * I will arrange a suitable system which will stop any heat from escaping to the surrounding by placing heat mats all around the apparatus. * Before starting the experiment i will record the weight of the spirit burner and record my results * Now i will place the burner under the calorimeter and light it, i will be stirring the water using the thermometer as its being heated * I will continue doing this until the temperature has risen about 15-20oC. ...read more.

Middle

= ?H-658 KJ/mol-1 Mass of 1 mole of methanol = 32g (C=12+H=(1x4)+O=16) Mass of fuel burned= Average/Mass --> 0.658 / 32 = 0.0205625 Energy Transferred by 1 Mole of Fuel = Mass of Water (g) x Change in Temperature x 4.18J (this is the energy required to raise the temperature of 1g of water by 1oC) = 50g x 8.32 x 4.18J = 1738.88J Heat given out by 1 mole of methanol = 1738.88 / 0.0205625= -84565.59J --> -84.5656 KJ/mol-1 Describe the terms endothermic and exothermic in terms of bond breaking and bond forming When a chemical reaction takes place bonds are broken in the reactants this is known as endothermic as energy is absorbed from the surroundings to break these bonds you can see this happening in the above ENDOTHERMIC REACTION the reactants are below the products meaning that the reactants need more energy from the surrounding the overcome the activation barrier and less energy is given out. The bonds of the products are weaker than those of the reactants and this is seen as a + (plus) ...read more.

Conclusion

The main error which could have given me invalid results was the calorimeter as when it gets heated it also gets covered in soot & heat loss 4. Also as the spirit burner is covered up there is another factor which could affect the experiment which is the oxygen levels as if they drop incomplete combustion. To improve the practical i could use a different copper calorimeter each time or rinse off the black soot. Procedural Errors: A Weighing balance was used to measure the mass of the spirit burner before and after the experiment the balance was to 2 decimal places Methanol before the experiment Percentage error = 0.005 x 100 = 0.0225% 22.83g Methanol after the experiment Percentage error = 0.005 x 100 = 0.0225% 22.212g I also used a measuring cylinder to measure the amount of water i used 2 x 100cm3 measuring cylinder to get 200cm3 i ensured lots of accuracy by looking at the bottom meniscus while measuring to produce more accurate reading i could have used pipette. ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Organic Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Organic Chemistry essays

  1. The aim of this experiment is to investigate the enthalpy change of combustion for ...

    * Ideally the alcohols should all be repeated three times and an overall average taken. However time is limiting so I will repeat each alcohol once and compare the accuracy of these results with the results of my previous methods, my bond energy calculations and the values obtained from the data book.

  2. Find the enthalpy change of combustion of a number of alcohol's' so that you ...

    error, which we are going to use later when we collect our results. It will help minimise the amount of error in the experiment. % Error: Electronic Balance It is set to 2 decimal places and therefore reads to the nearest 0.01g.

  1. The aim of this experiment is to produce Aspirin. This is an estrification in ...

    yield Theoretical yield = 2.6586 x 100 5.22 = 50.93% Results Compound Theoretical yield (g) Actual yield (g) Percentage yield Acetylsalicylic acid (aspirin) 5.22g 2.6586g 50.93% Forward titration(12) Calculations Re-crysatalised aspirin Average mass off aspirin = 0.3032g Average volume = 16.3000cm3 Number of moles of NaOH N = c x

  2. Comprehensive and Detailed Chemistry notes

    same mass as an electron but possess a positive charge 12454Xe + 11p � 12355Cs + 2(10 n ) 12355Cs � 12354Xe + 01e 12354Xe � 12353I + 01e * identify instruments and processes that can be used to detect radiation GEIGER-MULLER PROBE AND COUNTER -- The GM probe and

  1. Compare the enthalpy changes of combustion of different alcohols

    Making sure the thermometer is only touching the water and not the calorimeter like the diagram suggests. The calorimeter supported by the clamp stand should be the same distance from the flame as suggested in my previous step. To get more accurate measures and a faster procedure, the distance should

  2. Determination of the Enthalpy Change of a Reaction

    of 298K and 101kPa were not practical both in terms of time of the procedure and economics of achieving such precise conditions. Therefore comparing our calculated value of +70.48 kJ.mol-1 to the theoretical value written in a book of data: +177.8 kJ.mol-1; a quite substantial error could be produced.

  1. Investigating the Enthalpy Changes of Combustion of Alcohols.

    Although these two scales begin at different points (the Celsius scale is 273 degrees behind the Kelvin scale i.e. 0�C = 273 K), the difference in degrees is the same, so a temperature rise of 1�C is the same as a rise of 1K.

  2. I am going to investigate the difference in enthalpy of combustion for a number ...

    The estimation is worked out by applying the average bond enthalpies, an example for doing this is shown below for methanol Methanol (CH3OH) The balanced equation for the combustion of methanol is CH3OH(l) + 1.5 O2(g) CO2(g) + 2H2O(l) Below is the type and number of bonds within each mole

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work