• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Identification of an Organic Unknown

Extracts from this document...

Introduction

IDENTIFICATION OF AN ORGANIC UNKNOWN Introduction I am supplied with an unknown organic compound containing one of the following functional groups: * Alcohol * Aldehyde * Ketone * Carboxylic Acid * Ester * Phenol Organic compounds have different functional groups and therefore differ from each other. They also react differently, I will use this method to determine the type of organic compound I have. I will conduct various experiments to narrow down the choices. I will the using the information I have gathered construct an, easy to follow, flow diagram. Prediction While conducting these experiments, I will produce solutions, which I may need for the next step of the flow diagram. By observing physical changes to the reactants and recording any substance given off by the product, I will be able to follow my flow diagram and therefore determine the unknown compound. For example, if hydrogen gas is released, and the flow diagram gives a choice of hydrogen given off, and no hydrogen given off. I will down the appropriate route and dismiss the other route. Plan To find the organic the unknown, I will need to find the functional group and I will find this by how they react. ...read more.

Middle

At this stage I would have discovered that it does not react with Na so is not an alcohol, phenol or carboxylic acid. It also does not react with Fehling's solution so is not an aldehyde so it has to be either a ketone or an ester. The experiment that I have chosen to see the difference between the two would be the reaction with 2,4 DNPH. I would get the unknown compound and place a bit of it into a test tube, I will then add drop by drop the 2,4 DNPH if I see a change in the solution from clear to a yellow precipitate with yellow crystals I will be able to identify the compound as a ketone if not it will be an ester. Now that I have the experiments I will do to indicate if the unknown compound was one of the three that did not produce hydrogen when reacted with Na. I will now describe the experiments I will need to carry out to discover if the unknown compound has either the functional group of an alcohol, phenol or a carboxylic acid that would release Hydrogen when reacted with Na. A further experiment I need to carry out to identify if the compound is an alcohol or is it not. ...read more.

Conclusion

In all experiments I will need to take great precautions as many of the solutions are corrosive or flammable. As I will not know the functional groups present in the unknown organic compound I will not know if it is flammable or corrosive therefore I have to handle it with care and try to minimise any spillages. I will wear gloves and wear goggles to protect my hands and eyes. I will not have anything close to the table that may be obstructive and may catch fire. I have described all apparatus that I will use in the description of the experiment therefore have not listed them. In all of the experiments I will add the same amount of unknown compound to the reactant. I will therefore add 2cm of unknown organic compound to 2cm to its reactant. I will however not do these when adding universal indicator, as a few drops will be efficient. Any further reaction equations that may be helpful are written on the sheet with the flow diagram. I have used the chemistry 2 textbooks written by Brian Ratcliff and Helen Eccles. I have also used the Heinemann Advanced Science chemistry textbook written by Ann & Patrick Fullick. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Physical Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Physical Chemistry essays

  1. concentration of limewater

    Mr = 0.1 ÷ 74.1 = 1.35 x 10-3 From the equation, 2 moles of HCl will react with 1 mole of Ca(OH)2. Therefore moles of HCl = 2 x (1.35 x 10-3) = 2.7 x 10-3 Concentration of HCl is 2 mol dm-3: Moles = (volume ÷ 1000)

  2. Investigating the Rate of the Reaction between Bromide and Bromate Ions in Acid Solution

    where R.F.M. is the relative formula mass of the substance, and both the mass and the R.F.M. are measured in grams. The results of these calculations for each substance are shown in the table below (excluding solutions C and D - see below): Substance R.F.M.

  1. Investigating how concentration affects rate of reaction

    Water in large amounts. Explosion Risk of fire and explosion on contact with combustible substances and reducing agents. n/a In case of fire: keep drums etc. cool by spraying with water. Inhalation Cough. Sore throat. Breathing protection. Fresh air, rest. Refer for medical attention.

  2. Determining the identity of an organic unknown

    Differ in many ways to aliphatic alcohols. Like alcohols contain -O-H group but also a benzene ring. The difficulty in substituting the -OH group is due to the stabilisation caused by the overlap of the p-orbital of the oxygen atom with the bonding in the ring.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work