• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

In order to calculate the enthalpy change of Calcium Carbonate to Calcium Oxide, which is exceedingly hard to control and measure the energy change we must use Hess' law

Extracts from this document...

Introduction

Results CaCO Test 1 Test 2 Average Mass of CaCO Used :- 2.48g 2.49g 2.485g Temperature of HCl Initially :- 20�C 20�C 20�C Temperature of HCl after mixing with CaCO: - 22�C 22�C 22�C Total Temperature Change :- 2�C 2�C 2�C CaO Test 1 Test 2 Average Mass of CaO Used :- 1.40g 1.40g 1.40g Temperature of HCl Initially :- 19�C 20�C 19.5�C Temperature of HCl after mixing with CaO: - 38�C 36�C 37�C Total Temperature Change :- 18�C 16�C 17�C In order to calculate the enthalpy change of Calcium Carbonate to Calcium Oxide, which is exceedingly hard to control and measure the energy change we must use Hess' law which states:- "The total enthalpy change for a chemical reaction is independent of the route by which the reaction takes lace, provided initial and final conditions are the same" So therefore on adding Hydrochloric acid, which reacts readily with both, Calcium Carbonate and Calcium Oxide they both form Calcium Chloride crating a enthalpy energy triangle. ?H3 CaCO (s) CaO(s) + CO (g) ?H1 ?H2 CaCl (aq) Therefore:- ?H1 - ?H2 = ?H3 But we cannot enter our results directly into Hess' equation, we must convert them into Enthalpy energies. ...read more.

Middle

= 126136.6937 Jmol = 126 kJmol to 3sf With my result and the result produced by the data book I can calculate my percentage error. The information produced in the data book is under Standard Conditions. These conditons are:- * A pressure of 100 kilopascals * A temperature of 298K * The reactants must be in their natural physical state * All solutions must have a concetration of 1 mol dm With these accurate results from the data book I can calculate my percentage error:- Data book Information on "The Standard Enthalpy Change of Formation" ?H1 - Calcium Carbonate = -1207 kJmol ?H2 - Calcium Oxide = -635 kJmol ?H2 - Cabon Dioxide = -394 kJmol So on putting our Standard Enthalpy results into Hess's equation we get a Standard Enthalpy Change for Calcium Carbonate to Calcium Oxide:- ?H1 - ?H2 = ?H3 ==> -1207 - ((-635) + (-394)) = 178 kJmol Percentage error x 100 Standard Result - Our result Standard Result x 100 ==>178 - 126 178 =29.21% = 29% to 2 sf Evaluation Our experiment, when put into practice was not very reliable this was due to the factor of reactants surface area. ...read more.

Conclusion

There was also a problem with the chemicals used, the calcium oxide, calcium carbonate and hydrochloric acid may have been contaminated with other chemicals. It might not all have reacted the way it should have. I could nullify this by using a brand new sample of chemicals and have no interactions with other experiments or uses. This would guarantee reliable results. My method also had faults: The method did not specify a accurate measurement for Calcium carbonate and Calcium oxide, this would portray inaccurate and unreliable results, as an increase in the amount of reactants could increase the enthalpy value and could decrease the enthalpy value for a lower amount of reactants. Conclusion From my results I can tell that both reactions were exothermic, but that the reaction with calcium oxide was much more exothermic than the reaction with calcium carbonate. They were different because the bonds that were made in the calcium oxide reaction required less energy to be made than in the calcium carbonate reaction. My Hess' Law cycle can be labelled correctly:- ?H3 CaCO (s) -178 kJmol CaO(s) + CO (g) ?H1 ?H2 - 1207 kJmol -1029 kJmol CaCl (aq) If I were to do the experiment again I would enforce my changes mentioned to achieve a closer result to the Standard enthalpy value. Also I would further investigate enthalpy changes of alcohol's. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Organic Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Organic Chemistry essays

  1. Thermal Decomposition of Copper Carbonate

    Attach the glass tubing on the stopper (of the test tube containing the copper carbonate) with its delivery tube under the measuring cylinder. 5. Heat the test tube with a Bunsen burner until the copper carbonate has fully decomposed.(The powder should change from blue-green to reddish brown).

  2. Comparing The Enthalpy Change OfCombustion Of Different Alcohols

    + (68.20g?0.387Jg-1K-1?67?C) = 47918.00J We can calculate the new enthalpy change of combustion of ethanol incorporating the error: ?Hc = (Energy transferred/Mass of fuel burned) ? Relative molecular mass of fuel = (47918.00J/4.54g) ? 32 = 337748.00 = 338KJ mol-1for Methanol The new change in enthalpy of combustion of methanol will be 328kJ mol-1 +10kJ mol-1 or -10kJ mol-1.

  1. Find the enthalpy change of combustion of a number of alcohol's' so that you ...

    error, which we are going to use later when we collect our results. It will help minimise the amount of error in the experiment. % Error: Electronic Balance It is set to 2 decimal places and therefore reads to the nearest 0.01g.

  2. The aim of this experiment is to investigate the enthalpy change of combustion for ...

    The main reason for the increases in enthalpy of combustion is determined by the strength of the different types of bonds. Primarily the difference between the bond energies of the C-C atoms and the C=O atoms. The bond energy value between the C-C atoms is 350KJ/mol.

  1. The aim of this experiment is to produce Aspirin. This is an estrification in ...

    * The crystalline mush was diluted by adding 8cm3 of cold glacial ethanoic acid using a 10cm3 pipette and cooled by placing in a water bath containing crushed ice (product becomes less soluble when its cool). This was left for approximately 10 - 15 minutes until an impure solid was formed.

  2. investigating the amount of ascorbic acid present in fruit

    out the average titre for the sample of orange, lime and lemon from the titration. To work out the average titre I will be using the 3 consecutive results that were in 0.1cm3 of each other. First of all, I will add my 3 consecutive titres together, and then I

  1. Comprehensive and Detailed Chemistry notes

    Table and outline the relationship between position of elements in the Periodic Table and acidity/basicity of oxides -- Metals of Groups I and II all form basic oxides. The basicity increases down each group -- Most non-metals form acidic oxides.

  2. Determination of the Enthalpy Change of a Reaction

    / 177.8 = 60.4% Considering the scatter diagrams, they show the expected positive correlation. This is, the more reagents added, the more products there are. The amount of products formed is directly proportional to the temperature change since this is the amount of energy transferred as a result of the breaking and forming of intra-molecular bonds.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work