• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The aims of this experiment are to observe how varying strengths of Hydrogen Peroxide (substrate) increase or decrease the rate of oxygen production when added to a yeast solution.

Extracts from this document...

Introduction

Decomposition Of Hydrogen Peroxide: The aims of this experiment are to observe how varying strengths of Hydrogen Peroxide (substrate) increase or decrease the rate of oxygen production when added to a yeast solution. Equipment needed... Test Tubes and rack Hydrogen Peroxide of varying concentrations (H) Yeast Solution (H) 1cm� Pipette Burette Syringe Plastic Tub Stopwatch Notepad Goggles Lab Coat Beaker Retort Stand Delivery tube with secure bung Using all of this equipment to the highest level, I can assure that all of my readings are thoroughly accurate and that no anomalous results will occur. Due to the dangerous nature of firstly, the Hydrogen Peroxide, and secondly the yeast (Both of which if spilt in eyes or ingested could prove very dangerous, even deadly), I am using safety goggles and a lab coat as preventatives against spillages and breakages, and using a pipette and syringe to handle the dangerous liquids effectively, safely, and with the maximum efficiency. I will also label each of the bottles very clearly, and adhere to all simple lab rules, e/g/No bags on floors, coats on chairs, no running, and no bags on any work surfaces. There are many other ways that I could have carried out this experiment, such as using different equipment etc; here is why I chose the equipment listed above: Any measuring cylinder only measures accurately to app. 0.5 cm�, but the burette that I am using measures to 0.1 cm� for a lot more accurate reading. I could have simply counted the bubbles, but I did not know what volume each bubble was, hence I am using the burette to measure the volume produced. Diagram Of Equipment: The equipment was set up as shown in diagram above. In order keep this experiment as fair as humanly possible, I am going to take the following steps to ensure complete fairness at all times, and ensure that all other latent variables are kept at a constant level. ...read more.

Middle

The Collision theory states that a chemical reaction can only occur between particles when they collide (hit each other). Particles may be atoms, ions or molecules. There is a minimum amount of energy which colliding particles need in order to react with each other. If the colliding particles have less than this minimum energy, then they just bounce off each other and no reaction occurs. This minimum energy is called the activation energy. The faster the particles are going, the more energy they have. Fast moving particles are more likely to react when they collide. You can make particles move more quickly by heating them up, (raising the temperature). Secondly I believe that all of my predictions are correct, following information gained from "Biology For Life" By M.B.V Roberts, concerning active sites and timings. When I observe the readings on the burette, I am going to repeat this experiment 3 times, but if my results appear inconsistent then I will keep repeating them until I have 3 similar readings to gain averages from. This so that any anomalies can be discarded and retaken, until correct averages can be taken. For this experiment I also used knowledge gained from my preliminary work, with potato chips concerning masses. I found that when a potato was placed in Hydrogen peroxide and left, it began to react. I saw bubbles, which made me decide to collect the give me a means of measuring the reaction. I didn't want to simply count the bubbles as they were all different sizes and I did not know how much of the gas each one contained. I could have used an upside down measuring cylinder to measure the gas content, but it is only accurate to 1.0cm�, so I therefore decided to use a burette, which is accurate to 0.1cm�. Here are the Tables that I have recorded from undertaking my experiment. ...read more.

Conclusion

* Ensure that no oxygen is left in the burette. * Dry all of the test tubes before experiments begin. * Do not let oxygen escape through bungs or any un-noticed holes. * Squirt in yeast in at same pressure each time to ensure they all have the same kinetic energy when they heat the beaker sides and osmosis begins. * Make sure that delivery tubes are all the same length so that oxygen does not have further to travel before being recorded by timer in burette. * Keep Humidity the same throughout all the expts. * Use a mechanical pipette to measure out solutions. All anomalies are explained above, as directed. Using the experiments that I have carried out, I can now make a solid, firm conclusion based on evidence obtained, and that is that Rate of reaction ? Concentration, this can be seen in all of my tables (anomalies aforementioned), my graph and in my preliminary work from all text books, and internet sites listed in my bibliography. To say that the catalyst yeast's reaction is sped up by a substrate is all well and good, but to support a firmer conclusion I will need to undertake more experiments to gain more evidence, to ensure that all of my work is valid and not anomalous, as methods such as using a buffer tablet to control the PH level do not always work. Further Experiments-Extension: If time permitted me to, then I would now test out different substrates on this catalyst. I could simply change the substrate, or I could dramatically change the concentration to see if they were in line with my original predictions made in the first experiment. With my previous experiment with H2O2 I could not get readings with the higher concentrations as they used up the oxygen too fast in the burette and I couldn't get a reading. Using a very large burette could combat this. I could use dilute hydrochloric acid with the yeast to observe how that affected the timings of all the experiments. These may be undertaken at a later date. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Molecules & Cells section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Molecules & Cells essays

  1. A Level Biology revision notes

    is formed at the site of infection if no extensive vasculature is present Types of Immune Response * Lymphocytes undergo maturating before birth, producing different types of lymphocytes * Humoral response - B lymphocytes o Produce and release antibodies into blood plasma o Produce antibodies from B plasma cells o

  2. The Origin of the Mitochondrion.

    as it would a virus and destroy it, or that the gene may not function anywhere but in the mitochondrion itself. In order for a transferred gene to produce a product that functions in the mitochondria, it would first have to integrate, and then gain the necessary regulatory signals for gene expression and intracellular targeting (Fairbanks and Anderson 1999).

  1. Applied Science

    dissociates to release bicarbonate ion and hydrogen ion: H2CO3 H + HCO3 2. Phosphate buffer system. The phosphate buffer system is also present in both intracellular and extracellular fluids. However it is particularly important in the control of hydrogen ion concentration in the intracellular fluid and in renal tubular fluid and urine.

  2. Investigate how concentration of the enzyme catalase in celery tissue alters the rate of ...

    Record the volume of gas collected every thirty seconds for 2 minutes so that you have four results for "0 cm3 of Celery Extract/5 cm3 Water" in the table below. This is the 'control' for the experiment. 20. Repeat this experiment 2 more times (steps 4 to 17), leaving out

  1. How do temperature and concentration affect the rate of decomposition of hydrogen peroxide by ...

    orders of reaction for this reaction During my experiment I am going to alter the temperature of my reactants and the concentration of the hydrogen peroxide to see how varying each affects the rates of the reactions. Before carrying out my final experiment and the method and what volumes and

  2. This is an experiment to show how different concentration of celery tissue enzyme, catalase ...

    A very small amount of enzyme is needed to catalyse large amount of substrate into products, through their lifetime. The number of substrate molecule turned into products by one molecule of enzyme in a minute is called turn over number.

  1. Investigating the break down of Hydrogen Peroxide using catalyst

    because enzymes will only function well at an optimum pH value; this is normally 7 because enzymes are proteins which are damaged by very acidic or very alkaline conditions. If the pH level changes then the enzymes become denatured and do not function properly.

  2. The planned experiment is to measure the effect on the production of apple juice ...

    room temperature but that may differs as I cannot control the room temp properly but I can try by closing all windows and doors throughout my experiment. Preliminary Method * Set out all equipment needed for experiment such as test tubes and test tube racks to hold your solutions, any

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work