• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Find out the effect of acid concentration on the rate of reaction

Extracts from this document...

Introduction

Coursework - Rates of Reaction By Danny Rowe In this investigation I am aiming to find out the effect of acid concentration on the rate of reaction. In a chemical reaction there are four factors that affect how quickly the reaction takes; this is also known as its reaction rate: * Temperature * Concentration * Surface Area * Catalyst The reaction I will be looking at is the reaction between magnesium (Mg) and Hydrochloric Acid (HCl) 2Mg + 2HCl -> 2MgCl + H2 I will not be looking at the effect of temperature because this variable is difficult to control, surface area is very difficult to measure and catalysts would be very expensive, therefore I have decided to do concentration as this is easy to measure and vary. To do this investigation I will get different concentrations of acid and time, using a digital stopwatch how long it takes for the acid to react with the magnesium. This will give me the reaction rate which I can incorporate into a graph and compare which other data to help me determine how acid concentration affects the reaction time. To make the experiment as safe as possible I am going to make every effort to insure that I am wearing goggles at all times and that there is no possibility of any nearby objects obstructing me or potentially making the experiment dangerous. ...read more.

Middle

To help me develop my prediction I have used various sentences from the webpage, www.chem4kids.com/files/react_rates.html. Now that I have developed a prediction based on theoretical knowledge and information from other sources I now have the ability to develop a graph displaying the likelihood of the results. The graph is below: The reason why I felt that the rate of reaction is proportional to the acid concentration is that from my understanding I feel the higher the acid concentration the faster the rate of reaction, which I have backed up with scientific evidence previously. Towards the end there is a slight bend, the reason why I have incorporated this is that I feel that it would begin to gradually level off to 0.01 seconds as I feel it would be incorrect to suggest that with a acid concentration of fifty millilitres it will take 0.01 seconds to react with the acid when at forty millilitres it takes 250 seconds. Now that I have a solid understanding of what I am going to do in the investigation and have a rather strong prediction with accompanying evidence I am now ready to begin. The results I have retrieved are below: Acid/Water (ml) Time 1 (S) Time 2 (S) Time 3 (S) Time 4 (S) Time 5 (S) Average (S) 50/0 79.8 75.0 66.6 73.8 74.4 73.92 40/10 94.2 68.4 91.8 126.6 85.2 93.24 30/20 420.6 306.0 273.0 180.6 249.6 285.96 20/30 687.0 727.8 634.8 739.8 787.8 715.44 10/40 901.8 975.6 ...read more.

Conclusion

and see how that makes a difference to the reaction rate. After completing this, if the shape of the line followed a similar pattern to the previous tests then this would dramatically support my evidence and prediction. The chemical equation is below 2K + 2HCl -> 2KCl + H2 The results I have retrieved from the tests are below: Acid/Water (ml) Time 1 (S) Time 2 (S) Time 3 (S) Time 4 (S) Time 5 (S) Average (S) 50/0 48.4 53.5 66.6 28.7 50.4 49.52 40/10 57.7 39.2 57.6 97.6 55.1 61.44 30/20 383.8 247.7 233.4 151.0 213.8 245.94 20/30 646.9 692.2 605.7 707.4 752.5 680.94 10/40 868.9 938.7 947.4 888.7 935.0 915.74 To make the data easier to analyse and interpret, I am going to place the data into a graph which is located below: From the graph it is evident that there is a positive correlation and that the rate of reaction increases at a relatively proportional rate to the acid concentration which is exactly what occurred in the previous experiment. The only major difference is that the overall reaction time is significantly quicker, which is almost certainly due to the fact that potassium is higher then magnesium in the reactivity series. This helps me significantly prove the below statement. From this investigation I have found out that the higher the acid concentration the quicker the reaction rate as there is more acid particles to collide with the magnesium, which I have thoroughly backed up in numerous ways. This document was downloaded from Coursework.Info - The UK's Coursework Database 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Patterns of Behaviour section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Patterns of Behaviour essays

  1. Find out how different concentrations of HCl affect the rate of the reaction with ...

    Measure out 1cm of the magnesium using a ruler and then cut out the 1cm piece using a scissors. 4. Clean the cut piece of magnesium ribbon using a paper towel. 5. Add the Mg to the test tube and immediately close the open end of the test tube with the bung.

  2. Rates of reactivity.

    The same preparation was done for the calcium carbonate - chips form, but instead of hammering the calcium carbonate to make power they we're made into small blocks (chips), that were tried to be kept in the small shape as possible.

  1. Investigate various ways of increasing the rate of a chemical reaction and evaluate which ...

    Recording the change in mass would be appropriate as carbon dioxide is quite a heavy gas. However there is only one top-pan balance available for the whole class to use. Thus we are left with the method of observing a reactant dissolve.

  2. Science Coursework

    Furthermore the highest concentration which was 50g/L took the lowest amount of time to for the laminated cross to disappear. Whereas the lowest concentration 10g/L took the longest amount of time as the graph shows the differences between the two.

  1. An Investigation into the effect of Acid Concentration on the Rate of Reaction

    I will do this by timing the amount of time it takes to fill a gas syringe (to a set amount of 50cm�) from the reaction of Calcium Carbonate and Hydrochloric Acid. In doing so we will control other factors: Controlled Variables Independent Variables Dependant Variables Temperature Acid Concentration Time

  2. Investigate, analyse and evaluate the effect on the rate of reaction of varying the ...

    results have the same variables changing and remaining constant, this way I should not get any anomalous results. I will also use pure, distilled water so there are no impurities to affect the experiment and I will take the funnel out of the burette while filling the conical flask so no drips will make my measuring inaccurate.

  1. Study the reaction kinetics and find out evidence about the mechanism between the reaction ...

    Enthalpy is the changes in the heat content. These changes can be shown through the change in temperature. ?H= Enthalpy after - enthalpy after Enthalpy change of a reaction sometimes can be a rough guide to the likelihood that the reaction will occur.

  2. Investigating the Effect of Different Concentration Of Acid Rain On The Rate Of Reaction ...

    'Y' is multiplied by and 'S' is rate of reaction which is unknown and trying to be obtained. I predict that the higher concentrations will give off H2 faster for the reasons in the justification of hypothesis section. These higher concentrations are shown as the steepest lines in the graph

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work