• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Photosynthesis. In practice, TEMPERATURE, CARBONDIOXIDE, and LIGHT INTENSITY can interact to the limit of the rate of photosynthesis

Extracts from this document...

Introduction

Kieron Fenn Biology coursework Photosynthesis. Green plants don't absorb from the soil. They make their own food, using sunlight. This is called photosynthesis, which actually means 'making through light'. It occurs in the cells of green plants, which are exposed, to light. Carbon + Water LIGHT Glucose + Oxygen Dioxide CHLOROPHYLL 6Co2 + H2O C6H12O2 + 6O2 Some of the glucose produced in photosynthesis is used immediately by the plant to provide energy via respiration. However, much of the glucose is converted into insoluble starch for storage in the stem, leaves or roots. In practice, TEMPERATURE, CARBONDIOXIDE, and LIGHT INTENSITY can interact to the limit of the rate of photosynthesis. Anyone of them in particular at a particular time may be the limiting factor. With photosynthesis the more intense the light or the more amount of light the plants get, the more photosynthesising the plant will do. This means that I will be able to predict that my graphs up to a certain extent will be directly proportional. This also means that the light intensity will always limit the light of photosynthesis. There will be a point in the graph where the light will not effect the rate of photosynthesis. Therefore there must be some other limitation effecting the rate of photosynthesis which will either be the dark reaction, the carbon dioxide or the temperature. ...read more.

Middle

Method Fill the boiling tube with water and add 1g to the sodium hydrogen carbonate. Then place the Canadian pond weed using the tweezers. Then place the boiling tube in the water bath and take the temperature. Then place the water bath in front of the light source and wait for the bubbling to star. If there is no bubbling then you must snip a piece off the top of the weed. Place the light source at your chosen distances and count the bubbles for 1 minute each time. The conditions that we had to use were the room had to be dark and the temperature of the solution was 19 degrees Celsius. Diagram Analysis The graphs I have laid out are concave curves, which is what you would have to expect from graphs with direct proportion. The plots show and the lines show the results, on the distance/bubbles graph, you will be able to see that I have plotted an average as well as the previous three attempts. On the second graph you can see that I did no plot and show the previous three attempts because I felt that it was not necessary. The curves on both of the graph show that the rate of photosynthesis never reached zero as I predicted in the hypothesis, this is because the room never was totally dark. ...read more.

Conclusion

Although I think that the reliability of the experiment was not as good as it could be, I think that the experiment was not really that effected, and it wasn't that much of a problem. To make my results reliable and good I decided to do them three times and then take an average to produce the graph and from the graph I would say that my results were suitable and very reliable. My results produced similar graphs to what I had hypothesised in my hypothesis. I feel that the distance graph was inversely proportional like I said in my theory and the intensity graph was directly proportional. I did not get very accurate answers because some of the bubbles were bigger than the others. To make more accurate results I would use a more accurate method as shown below. As you can see the bubbles produced by the plant is automatically drawn up the capillary tube and then they congregated at the corner. After one minute I will pull back the syringe and this will draw one big bubble to the end of the syringe. Then I will be able to measure the bubble with a ruler. After knowing this information and the circumference of the capillary tube you can then work out the surface are therefore giving a more accurate result. By Kieron Fenn. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Green Plants as Organisms section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Green Plants as Organisms essays

  1. Marked by a teacher

    Light Intensity and Photosynthesis.

    4 star(s)

    Bubbles (cms) (lux) 45 55 12 40 80 12 35 110 13 30 149 14 25 208 16 20 310 18 15 590 20 10 945 21 5 1015 21 Although this is a very quick, simple and efficient way of obtaining an idea of the trends for the graph,

  2. How does light intensity affect the rate of photosynthesis

    I considered collecting the oxygen in a boiling tube but decided that this would be difficult to measure. Both of these two methods were the most accurate but I had to revert back to counting the bubbles that were released by the pondweed instead as this was more straightforward and needed less time.

  1. Experiment to Investigate the Effect of Temperature on the Rate of Photosynthesis in Elodea.

    The percentage error of the syringes used for the small volumes taken was extremely small, so syringes were more practical to use in this experiment. One of the largest sources of error in this experiment was temperature control. It is extremely to keep the temperature constant for three readings using just ice and hot water.

  2. Investigating the effect of temperature on the rate of photosynthesis

    An electron in the chlorophyll a molecule is excited to a higher energy level and is emitted from the chlorophyll molecule. Instead of falling back into the photosystem and losing its energy as fluorescence, it is captured by an electron acceptor and passed back to a chlorophyll a (P700)

  1. What is the effect on the rate of respiration of yeast cells with glucose ...

    minutes * After 5 minutes, stopper the reaction vessel of the conical flask and start the timer. * After 2 minutes had elapsed, check the gas syringe scale and record the amount of gas produced.

  2. To investigate how light intensity affects the rate of photosynthesis of pond weed at ...

    I could have obtained this anomalous result because there wasn't a constant stream of bubbles coming from my plant all of the way through the investigation. This could have affected the result because there wasn't a constant stream so very little bubbles were coming out of the plant at this time.

  1. Investigate the effect of light intensity on the rate of photosynthesis in an aquatic ...

    show that photosynthesis is taking place, I chose to measure the rate of oxygen produced. Diagram a: Figure a: List of equipment required, and required measurements * Large beaker, or alternatively a 2 litre bottle cut in half: Fill with water at 30 degrees centigrade to 1 litre * One

  2. How temperature affects the rate of photosynthesis.

    [Text adapted from OCR A2 Biology Textbook] Photosynthesis occurs mainly in the leaves of green plants which contain a light trapping pigment called chlorophyll. The raw materials needed for photosynthesis to occur are carbon dioxide (CO2) which is obtained from the air via stomata by diffusion and water (H2O)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work