• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The aim of this experiment is to find the concentration of a sample of limewater solution in g dm3.

Extracts from this document...

Introduction

Chemistry Plan The aim of this experiment is to find the concentration of a sample of limewater solution in g dm3. I am required to design my own experiment and choose a range of appropriate equipment and apparatus. I am provided with 250 cm3 of limewater, which has been made such that it contains approximately 1g/dm3 of calcium hydroxide. Also available is hydrochloric acid which has a concentration of 2.00 mol dm3, this concentration is too much though so it is necessary to dilute it. The apparatus, equipment and chemicals that I will use are as follows: - 1) Pipette 25cm3 2) Volumetric flask 500cm3 3) Conical flask 250cm3 4) Burette 5) White tile 6) Clamp and stand 7) Indicator (methyl orange) 8) Limewater (250cm3 with approximately 1g/dm3 of calcium hydroxide) 9) Hydrochloric acid- standard solution (conc. 2.00 mol/dm3) 10) Distilled water Slaked lime dissolved in water is called limewater. ...read more.

Middle

That is why I have chosen the pipette, volumetric flask and burette. All of these instruments have an accuracy of �0.05cm3, which is suitable for my experiment and should produce accurate and reliable results. In making my choice of indicator I also had to be very careful. The Limewater used will be a relatively weak base so it will be appropriate to use methyl orange as it has an end point on the ph scale between 8-5. Whereas phenolphthalein indicator has an end point much higher up in the ph scale. So if I were to use the phenolphthalein indicator then the end point (colour change) would be reached before the equivalence point (when the chemicals, acid-base break up). Implementing Safety is very important and it is necessary to follow safety procedures. It is important to wear eye protection when working with any acid. Also long hair should be tied back. ...read more.

Conclusion

When the indicator is added the colour of the solution is light, clear, orange and this should turn to pink by the end of the titration. In order to obtain consistent and reliable results it is necessary to repeat the experiment 3 times at a minimum and if the results were not in 0.1 of each other then further experiments would be needed. 0.1 is the figure that I have used as it is the accuracy of the burette. After this it the results must be noted in a table complete with the correct units. Using these results we first apply this formula Number of moles= concentration*volume(dm3) to the Hcl as we know its amount and concentration so can work out its number of moles. We then look back at the balanced equation and see the reaction ratio. In this case it is 2 moles of Hcl to 1mole of Ca(OH)2. So we times this number by 2 and we have the number of moles of limewater. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Marked by a teacher

    Enthalpy of Neutralisation.

    3 star(s)

    and Sodium Hydroxide (200cm3 of 1 molar). The equation for the reaction is as follows: CH3COOH + NaoH ? CH3COONa + H2O ?H = -56.1 kJ mol-1 In this reaction, exothermic reaction is taking place. Data result table. Initial temperature: 26oC. 1 ml of CH3COOH Temperature in degrees centigrade 0 22 0 22 0 22 0 22

  2. Antacid Experiment.

    This is shown in the graph below. This graph shows the average titration of hydrochloric acid it took to neutralise each tablet. To support my conclusion you can clearly see that the rennies bar is the highest and so this shows that the rennies tablet can take a higher amount

  1. Aim/Objective: To find out the dissolved oxygen content (in mg dm-3) in a water ...

    When filling small amount of solution into the volumetric flask using dropper, the dropper should be immersed well below the water surface, to ensure that the added solution could react with the water sample. If the solution was added onto the top of the solution, overflow will occur, and the content overflowed would be the added solution.

  2. The Concentration of Limewater Solution.

    be rinsed as residue from previous trials would contaminate the limewater and make the results il1accurate. 12. Use an average of the two results that are within 0.10cm3 of each other to calculate the exact concentration of the limewater in 1.00dm-3.

  1. Find out the accurate concentration of an aid solution thought to have a concentration ...

    Then add sodium carbonate solution, in small volumes, to the acid solution in the conical flask. Swirl the flask after each addition. 6. The four drops of Methyl Orange turns the liquid orange in a alkaline solution. The beaker is placed on a white tile so that when total neutralisation occurs the peach colour can be easily seen.

  2. The aim of this experiment is to find out the concentration of a solution ...

    Calculate the mass of sodium carbonate to make 250cm� of a 0.1 M solution. Na2CO3 (aq) + H2SO4 (aq) --> Na2SO4 (aq) + CO2 (g) + H2O(l) Na2CO3 (aq) (2x23)+(12)+(3x16)= 106g in 1000cm� of H2O(l) = 1 molar solution Therefore there is 10.6g in 1000cm� of H2O(l)

  1. Find the concentration of a sample of limewater solution in g dm3.

    The Limewater used will be a relatively weak base so it will be appropriate to use methyl orange as it has an end point on the ph scale between 8-5. Whereas phenolphthalein indicator has an end point much higher up in the ph scale.

  2. Determine the concentration of lime water.

    The pipette that I was using was holding back some of the solution each time but I dispersed of this by blocking of the top end and wrapping my hand around the pipette, warming the interior slightly and pushing the drop out. Some errors are likely to come from measurements.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work