• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The Rate of Reaction Between HCl and Mg

Extracts from this document...


Chemistry Sc1- The Rate of Reaction Between HCl and Mg Aim To investigate the affect on the rate of reaction by changing a factor of the experiment. Introduction When hydrochloric acid and magnesium react, the hydrochloric acid will dissolve the magnesium and produce hydrogen gas. All chemical reactions involve reactants which when mixed together may react to leave a product. In this case, the reactants are magnesium and hydrochloric acid. The reaction occurs when the magnesium is dropped into the hydrochloric acid. The equation for this experiment is: Magnesium (s) + Hydrochloric acid (aq) � Magnesium Chloride (aq) + Hydrogen (g) Mg + 2HCl � MgCl2 + H2 The magnesium will react with hydrochloric acid, because it is higher in the reactivity series that hydrogen. When the two chemicals react, a displacement reaction will take place and the magnesium will displace the hydrogen in the hydrochloric acid forming magnesium chloride and hydrogen gas. Therefore, the products of the reaction are magnesium chloride and hydrogen gas. The factors that may affect the rate of reaction are: * Temperature of the Hydrochloric acid * Mass of the magnesium ribbon used * Concentration of the Hydrochloric acid * Surface area of the magnesium ribbon used All of these factors will change the rate of reaction because of the Collision Theory. ...read more.


1.0M is double the concentration of 0.5M and 2.0M is double the concentration of 1.0M. We will only be using a measuring cylinder to measure out the volume of acid to use and we could improve the accuracy of the experiment by using a syringe. The heat given off during the reaction may be a problem too, because the higher the concentration of acid, the more heat is given off which will mean the reaction occurs even quicker. However, the heat given off during the reaction in relation to the concentration of acid will be the same for each experiment so the results should not be affected. Prediction I predict that the higher the concentration of the acid, the higher the rate of the reaction will be. This is based on the Collision Theory. The higher the concentration of acid, then the higher the concentration of acid particles there will be in a certain volume. This will mean that the higher the concentration of acid, the more the successful collisions there will be in 1 second. Therefore, the rate of reaction increases. Results Concentration Time 1 Time 2 Time 3 Time 4 Time 5 Average 0.0M No Reaction No Reaction No Reaction No Reaction No Reaction No Reaction 0.5M 90.32 83.46 84.49 87.05 86.61 86.39s 1.0M 42.29 44.11 42.77 43.62 43.75 43.31s 1.5M 26.61 25.57 27.16 27.59 29.47 27.28s 2.0M 23.03 19.65 23.75 19.11 ...read more.


However my conclusion was more detailed than my prediction in stating by how much the rate of reaction increased with a certain concentration of acid. Evaluation Our method to obtain the results went well because it was accurate and the consequence was that we could draw reliable graphs. The results were reliable and quite accurate and there were no anomalous results. The only slightly off point on the graphs was for 4.0M. This may have been because the heat produced from the reaction sped it up more in relation to the other concentrations. The procedure was suitable for the results we wanted to obtain because it was quick, fair and quite accurate. Although, the results were excellent, they were not perfect. Some of the reasons for this may be: * When the reaction takes place, bubbles of H2 are given off, which might stay on the magnesium, therefore reducing the surface area of the magnesium so the acid cannot react properly so this affects the results. * There may have been some slight human error when stopping the stopwatch. The results helped to give a firm and reliable conclusion and it would have been hard to improve them. However, to improve the experiment, we could use a computer to time the reaction. We could also carry out the experiment with HCl of higher concentrations than 4.0M and repeat the various concentrations still further, although I feel that for this experiment, five times was sufficient. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Patterns of Behaviour section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Patterns of Behaviour essays

  1. Marked by a teacher

    The Effect of Concentration on the Rate of Reaction between Magnesium [Mg] and Hydrochloric ...

    4 star(s)

    Temperature- * The higher the temperature the more energy the particles have. * This means that they will be moving faster. * This increases the rate of successful collisions. * Particle shave more energy, so more likely to react when they collide * This results in an increased or higher rate of reaction.

  2. Marked by a teacher

    Investigation of the rate of reaction between Magnesium and Hydrochloric acid

    4 star(s)

    We also found that 2 molar was too fast. As I had already reduced the amount of magnesium powder to 0.5g I decided to reduce the Concentration of the magnesium to 1.0 molar. Third test: Hydrochloric acid 0.2 molar (50 ml)

  1. Marked by a teacher

    For my experiment I am finding out the effects on the reaction rate when ...

    3 star(s)

    end of the burette, with a tap, closed to prevent water escaping from the other side.) with the aid of a funnel, and overturned the burette (covering the opened side) and placed it into the bowl. Then I measured out the necessary volume of distilled water and two molar hydrochloric acid using separate pipettes for each.

  2. Marked by a teacher

    The aim of this investigation is to investigate the rate of reaction of magnesium ...

    and add it to the water. * Place the side arm tube in a water bath at 20OC, set up the apparatus below. * Measure 10.9 cm of magnesium ribbon and check on the balance that it weighs 0.1g. * Coil the ribbon around a pencil and then drop it into the side arm tube and

  1. How does changing the concentration of the Hydrochloric acid affect it reactions with Magnesium?

    I repeated all 5 concentrations twice to be sure that they were reliable results and in all cases the higher the concentration the higher the rate of reaction. I had stated this in my prediction. However I also stated in my prediction that if I doubled the concentration from 1M

  2. To investigate the effect of the concentration of nitric acid on the rate of ...

    However, as I am not going to rely solely on the results of my preliminary investigation to conclude it, I am not going to pay so much attention to things like fair testing, although I will try and conduct the investigation as fairly as I can.

  1. Investigating the Rate of Reaction Between Hydrochloric Acid (Hcl) and Magnesium (Mg).

    The collision theory comes into play concerning the speed. When the atoms gain more kinetic energy they move around faster, and therefore more atoms collide more often. * Concentration of the acid If you increase the concentration of the acid you increase the number of hydrochloric acid particles in the solution.

  2. Rates of reaction between Magnesium and HCl.

    Equipment: Tripod Sodium thiosulphate solution Bunsen burner dilute hydrochloric acid Conical flask Thermometer Stopwatch Pen and paper Method: Firstly heat 50cm� of sodium thiosulphate solution to the appropriate temperature. Then place the conical flask on the cross and add 5cm� of the hydrochloric acid and time how long it takes for the cross to disappear.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work