• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To compare the given values of the molar heat of combustion

Extracts from this document...

Introduction

AIM: The aims of my experiment are to compare the given values of the molar heat of combustion with my experimental values, and to predict the theoretical value of heptanol. PREDICTION: I predict that my experimental values will be lower than the given values. This is because heat will be lost in unnecessarily obtaining the results. This will be by sound and light energy given off, incomplete combustion (complete combustion occurs when there are lots of oxygen atoms available when the fuel burns, and then you get carbon dioxide, as a carbon atom bonds with two oxygen atoms; a limited supply of oxygen results in carbon monoxide being produced), and also conduction, convection and radiation of heat through the air, and draughts speeding the process up. Water will be evaporated, meaning that there is a lower volume of water, causing the remaining water to absorb more heat energy, which will affect the results. To combat this, I will stir the water with the mercury thermometer immediately after the experiment, thus spreading the heat energy around the water. The beaker will also be heated, diverting some of the heat energy away from the water. ...read more.

Middle

ETHANOL PROPANOL BUTANOL PENTANOL HEXANOL START TEMP 19.4 18.7 19.5 19.5 19.3 END TEMP 102 101 85 78 71 TEMP. DIFFERENCE (*c) 82.6 81.3 65.5 58.5 50.7 WEIGHT LOSS (g) 4.2 3.65 3.32 2.98 2.67 My results seem to indicate that the temperature difference decreases as the number of carbons increase, and the weight loss increases as the number of carbons increase. To find the energy of the alcohol, you must multiply the mass of water by the heat capacity by the temperature change. Energy = mass of water x heat capacity x temp change Energy = 100 x 4.2 x 82.6 Energy = 420 x 82.6 Energy = 34962 To find the energy per gram of the alcohol, you must divide the energy by the weight loss in the experiment. 34962 = 8324.29 (2 d.p.) 4.2 Then, to finds the molar heat of combustion, you have to multiply the energy per gram of the alcohol by the relative molar mass (RMM) of the alcohol. This varies, as a carbon atom weighs 12 grams, a hydrogen atom weighs one gram, and an oxygen atom weighs 16 grams. ...read more.

Conclusion

Also the calorimeter is too far away to absorb heat energy, diverting some of the heat energy away from the water. CONCLUSION: Here are the given values, along with my experimental values: Alcohol Exp. values (KJ mol -1 ) Given values (KJ mol -1 ) Ethanol -382.92 -1367.3 Propanol -561.30 -2021.0 Butanol -613.17 -2675.6 Pentanol -725.56 -3328.7 Hexanol -829.43 -3983.8 As I have explained, the values rise at a constant rate, so for heptanol, I predict that if the experiment was done to the same standard as the experiment that produced the given results, then the molar heat of combustion of heptanol would be roughly 654 less than -3983.8 KJ mol -1, as that seems to be the difference each time between two consecutive alcohols, which would be -4628 KJ mol . However, if I had the option of experimenting with heptanol (time and equipment prevented m my method from being reliable enough), then I predict that the value would be on the line of best fit, which would make it roughly -940 KJ mol -1. Alcohol Exp. values (KJ mol ) Given values (KJ mol ) Ethanol -382.92 -1367.3 Propanol -561.30 -2021.0 Butanol -613.17 -2675.6 Pentanol -725.56 -3328.7 Hexanol -829.43 -3983.8 Heptanol -940 -4628 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Organic Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Organic Chemistry essays

  1. Investigating the Combustion of Alcohols

    The amount of time we had in which we had to investigate the combustion of alcohols was also a limitation. If we were allowed more time or if there was no allocated time in which we had to carry out the investigation, then perhaps more data could have been collected and then a more accurate average calculated.

  2. 'Enthalpy of Combustion'.

    is again reinforced by the results from a preliminary experiment involving Alkanes. Methane, Ethane, Propane and Butane were all burnt using the same method as in this investigation. The results were calculated and are as follows: Alkane No of C Atoms Energy produced kJ/mole Pentane 5 318.32 Hexane 6 802.67

  1. Molar Heat of Combustion of Alcohols

    The room temperature will be constant so there should not be many outside factors affecting the experiment. Preliminary Work: We wanted to find out whether a lid and draft excluder would work and what container was best to heat the water in.

  2. The aim of this investigation is to compare the enthalpy of the following different ...

    two of their carbon atoms so they are described as unsaturated hydrocarbons. This makes alkenes much more reactive than alkanes. Other atoms can add across the double bond to make two single bonds. So alkenes readily undergo addition reactions. The following table summarizes three important addition reactions of ethane.

  1. Investigation to compare the heat energy produced by combustion of various Alcohols

    If the pot is close to the heat source, more heat is directed to the water so will be heated faster. * The Alcohols: Different alcohols have different bond structures, some bonds needing more energy to break them than others, and some releasing more energy when they are broken.

  2. Heat of Combustion Vs. Number of Carbon Atoms.

    >Bunsen >Thermometer (mercury)- nearest half a degree >Scales- electronic 2 decimal places >Heat proof mats >Goggles METHOD ? Measure out 200ml of water in the measuring cylinder. ? Pour into tin can. ? Record the temperature of the water-using thermometer.

  1. Which Alcohol is the best fuel?

    can as this could change the results because the tin is a conductor and will be hotter in places. 7. After the two minutes, extinguish flame, replace lid on burner and weigh again to record as the 'ending mass.' 8.

  2. GCSE Chemistry Revision Notes - everything!

    Sulphur dioxide can trigger asthma attacks. Hydrogen Since hydrogen is less dense than air, and almost insoluble in water, you can collect it over water or upwards into a test tube. Hydrogen pops when a lighted splint is exposed to the gas. It also combines explosively with oxygen in the air to make water. 2H2 (g)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work