• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Chemitry Lab - Molar Volume of a Gas

Extracts from this document...

Introduction

Introduction: In this lab I am going to find out the volume of one mole of hydrogen gas at room temperature and atmospheric pressure. The room pressure only slightly differs from the standard, but can be taken into consideration when calculating the results. The molar volume is 22.41 liters per mole at STP (Standard pressure), in other words, at zero degrees centigrade. Figure 3.1 (the experiment set up) Procedure: 1. Set up all equipment. 2. Cut a piece of Magnesium ribbon about 20cm in length. 3. Calculate the weight of the ribbon from the weight of a 1 m long ribbon. 4. Measure 1.0 M Hydrochloric acid to a volume of 25-30ml. 5. Pour the HCl to the reaction flask. 6. Add the Mg ribbon to the reaction flask and secure the mouth of the flask as fast as possible with a hose. Make sure that the hydrogen gas cannot escape from the flask. 7. Follow the temperature 8. Collect the gas until no further reaction is observed in the reaction flask. 9. Carefully remove the gas collection flask so that no gas escapes from the flask. 10. Light the gas. 11. Determine the volume of the gas. ...read more.

Middle

* After the reaction, when lighting the hydrogen gas, collection beaker made a popping sound but the reaction flask actually burned and formed a thin flame. * The flame from the reaction flask gave out a lot of heat, which was not noticed when lighting the gas in the collection flask. Figure 3.2 Time (min) Temperature (C) 0 22 1 27 2 26 3 25 4 25 5 25.5 6 26 7 26 8 26 9 26 10 26 11 26 12 26 13 25.5 14 25.5 15 25 Figure 3.3 Calculations: 1.000m � 1mm of Mg ribbon weights 1.06 g �0.005g 25.8cm �1mm Mg ribbon used weight = 0.27348g 1.06g ? 25.8cm = 0.27348 ? 0.96% (0.003g) 100 30ml � 1ml (3.3%) of HCl m(Mg)=0.273g M(Mg)=24.31 n=0.273 = 0.011 n(H2) 24.31 Molar volume at the conditions in the room? molar volume= liters mol V(m)= 0.292l = 26.545 l/mol 0.011moles Correction for temperature 26.545 l at 294 K ? l at 273 K pV=nRT V1=V2 T1 T2 24.545 l/mol = X X = 22.79 l/mol at room temperature 294 K 273 K Correction for pressure P1 =750 TORR P2= 760 TORR 22.79 = X X= 22.5 l/mol 760 750 22.49 - 22.41 = 0.36% error 22.49 Theoretical = 22.5 l/mol Vm= 22.41 0.36 % error The molar volume was 0.36% too large. ...read more.

Conclusion

The experimental value turned out unexpectably very small. 0.36% error in the experiment seems very small, unless there has been some unnoticed mistakes that have influenced the experimental value. The theoretical value is 22.5 l/mol. Temperature changes during the experiment turned out some interesting results, for the temperature seems to start falling soon after the chemical reaction has ended, yet it begins to rise a little after a few minutes and stays constant for a long time before starting to fall (figure 3.2). From the information gained during this experiment, it is difficult to state why this happened; therefore, some extra research should take place if performing the experiment again. Improved investigation: For further investigation, temperature should be measured for longer than 15 minutes in order to find out the rate the temperature is going to fall in a closed flask. The distance between water surface in the container and the surface in the flask should also be measured. For more accurate results, factors such as air and water vapour in the flask should be taken into consideration when calculating the final values. Advisable would be to do some research on why the temperature changed the way it did in this experiment. ?? ?? ?? ?? The molar volume of hydrogen gas 20.10.2009 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Acids/Bases Design Lab. How does a change in the pH value of a solution ...

    (The solution was decanted into a waste beaker) The remaining zinc was then placed (with the use of tongs) in another clean, and dry 50cm3 beaker that was already massed, labeled 'Beaker BRT1', in which it was washed with distilled water from distilled water bottle pumps.

  2. Universal Gas Constant Lab. Aim: To determine the universal constant for gases by collecting ...

    eudiometer This indicates that the eudiometer is not totally clean, thus these droplets form around the impurities.

  1. Airbag design lab. Is it possible to use baking soda, NaHCO3(s), and 2.00 ...

    Water pressure=2.34kPa 101.52kPa-2.34kPa =99.18kPa Moles of CO2 (PV=nRT) PV/RT=n (99.18)(.750L)/(8.314)(293k)=n n=0.030536 Concentration of Hydrochloric acid (HCl(aq)) n=cV n/c=V 0.030536/2�0.015268L �15.268mL Volume of Ziploc bag-volume occupied by HCl .750L-0.015268L =.734732L Moles of Baking Soda (NaHCO3) (PV=nRT) PV/RT=n (99.18)(.734732L)/(8.314)(293k)=n �0.02991406 mol-1 Mass of Baking Soda (NaHCO3)

  2. Molar Heat combustion chemistry - investigate the effect of molar mass on the molar ...

    The more bonds that are being broken, the more energy is being realised. This explains why the molar heat of combustion increases as the molar mass increases. The linear relationship could also be explained that the bonds in this series are only single bonds and does not create double or triple bonds as the series number increases.

  1. Ideal Gas Constant Lab

    Evaluation: From the results, it can be concluded that method by which the ideal gas constant was not completely accurate. One error could have occurred as the water was put into the eudiometer. The water was supposed to drizzle down the side of the eudiometer so that the acid would

  2. Change of Potential Difference in Voltaic Cells Lab Report

    To prepare 50 ml of 1.0 M zinc sulfate 14.377 g of ZnSO4.7H2O is needed to be dissolved in 50 ml distilled water. For 5 concentrations of copper sulfate solution, the total volume of 1M of zinc sulfate needed is 250 ml.

  1. Aim: To find the molar mass of butane, by finding the number of moles ...

    Mass [�0.01g] Pressure/mb [�0.5mb] Volume/ dm3 [�5*10-5dm3] R Temp/ K [�0.01K] Number of Moles of Butane (n) [�0.00001] 1 0.08 960.1 0.0450 83.14472 301.2 0.00173 2 0.06 960.1 0.0296 83.14472 301.2 0.00113 3 0.06 960.1 0.0367 83.14472 301.3 0.00141 4 0.03 960.1 0.0240 83.14472 301.1 0.00092 Caculations 1.

  2. Chemistry lab reort-molar volume of hydrogen

    0.039 Temperature of water () 25.0 Temperature of air () 20.0 Initial volume of HCl () 49.70 Final volume of HCl () 10.45 Height of HCl column () 12.9 Reference Data Table Atmospheric pressure () 102.44 Vapor pressure of water (kPa)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work