• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Discovering the formula of MgO

Extracts from this document...

Introduction

Zara Alam Report 6: Reaction between Magnesium and Oxygen Design Objective: The aim of our experiment was to observe the effect of burning pure Magnesium (Mg) in oxygen (O2) and to confirm the chemical formula of magnesium oxide by comparing the masses of pure solid magnesium (prior to any reaction) and magnesium oxide solid after a reaction between magnesium and oxygen from the air when heated from a Bunsen burner in a crucible. Using molar masses of both magnesium and oxygen, an expected percent composition, by mass, was found and compared to our experimental results. Theory: Magnesium oxide is easily made by burning magnesium ribbon which oxidizes in a bright white light, resulting in a powder. 2 Mg(s) + O2 (g) 2 MgO (s) ?H = ?1204 kJ Theoretical work: % composition of oxygen in Mg2O= 16.00/ ((24.01*2) +16) =25.0% % composition of oxygen in MgO=16.00/ (24.01+16) =40.0% % composition of oxygen in MgO2=16.00/(24.01(16.00*2))=57.1% Prediction: Weight of material would increase when magnesium burns. Variables: (i)Independent variable: Mass of Magnesium ribbon (ii)Dependent variable: Mass of Magnesium Oxide The independent variable will be the mass of magnesium ribbon, this is because the mass of the product i.e. Magnesium Oxide, depends on how much Magnesium is added. ...read more.

Middle

Don't let this happen. Keep heating and lifting the lid until you see no further reaction. At this point, remove the lid and heat for another 8-10 minutes, until all the magnesium has turned into a white powder. Turn off the Bunsen burner and allow the apparatus to cool. Re-weigh the crucible containing the product. Filter paper will burn and ashes are supposed to weigh nothing. The experiment was repeated four times for accurate results. Data Collection and processing Raw Data: Serial No. Mass of Magnesium(g)±0,001g Mass of crucible without lid(g)±0,001g Mass of crucible with product(g)±0,001g 1 0,058 10,864 10,954 2 0,101 10,864 11,027 3 0,086 10,864 11,002 4 0,076 10,864 10,984 Observation: Original: The piece of Mg ribbon we took was silver-black. Experiment done by holding the Mg ribbon above the Bunsen flame: The Mg ribbon no longer stayed into one piece and it turned white black. Experiment with more controlled conditions: Once the magnesium was in the crucible and was being heated by the Bunsen burner, it glowed for a brief time. It then caught fire before the lid was placed on top. ...read more.

Conclusion

2. not all the magnesium may have reacted (the product may still look a bit grey rather than white) 3. Possible sources of error in this experiment include the inaccuracy of measurements, as correct measurements are vital for the experiment for example not making the balance reading zero before weighing. 4. having the magnesium coiled too tightly so that not all of it reacts 5. Not cleaning Mg ribbon and crucible before starting experiment. This would mean that not all the magnesium reacted to form magnesium oxide, and so there would be a smaller mass of magnesium oxide than expected. 6. The reaction not properly finishing should also be counted as a possible source of error. If you did not burn the magnesium in the crucible for the right amount of time, some of the magnesium would not have time to react and form magnesium oxide; thus, there would be less magnesium oxide at the end of the experiment than expected. Further improvement: The crucible and lid can be heated at the beginning of the experiment before being weighed so that any moisture in the crucible is burned away. Moisture is heavy, and thus it can change the results of the experiment, as we only want the weight of magnesium and the magnesium oxide. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Empirical Formula of Magnesium Oxide

    mass of Mg Therefore, the average amount of magnesium obtained throughout the trials was 0.2g�0.02g or 0.2g�10% This table summarizes the differences calculated above Average Experimental mass of O2 (g) Average Experimental mass Mg (g) 0.08g�0.02g or 0.08g�25% 0.2g�0.02g or 0.2g�10% Determining the empirical formula of magnesium oxide Find the

  2. Experiment - The Empirical Formula of Magnesium Oxide

    There was no percentage uncertainties involved in molar mass. Consequently, the percentage uncertainty of the mass becomes the percentage uncertainty of the number of moles. Conversion of the uncertainties In the end, the absolute uncertainties of the number of moles were accessed. Absolute uncertainty (Mg)= � actual measurement*percentage uncertainty (Mg)

  1. Lab Experiment : The change in mass when magnesium burns. (Finding the empirical formula ...

    + 0.0001 =24.5431g Final mass of (MgO) inside crucible with lid in grams + 0.0001=24.7389g Processed Data: Percentage uncertainty= 0.04% 1.Mass of magnesium (in grams) + 0.0001= 0.3557g (The mass of magnesium ribbon = The mass of the crucible, lid and magnesium- mass of the crucible and lid)

  2. Hesss Law Lab, use Hesss law to find the enthalpy change of combustion of ...

    = (0.25g/24gmol-1data book let) = 0.0104mol. Therefore, for one mol the energy given out would be: ?H = where Q is the heat energy and n is the number of moles. ?H1= (negative sign because the reaction is exothermic) For MgO Energy change Q = mass x specific heat capacity x change in temperature.

  1. Hydrogen Gas Collection Lab CE (6/6) A sample of solid magnesium ribbon, measuring approximately ...

    and Mg(s) had ceased, a substantial number of pockets of clear liquid remained on the sides of the gas measuring tube that could not be shaken down. These pockets were situated in the part of the gas measuring tube that the hydrogen gas that was collected had settled.

  2. To determine the standard enthalpy of formation of Magnesium Oxide using Hess Law.

    Same thermometer has been used for all the temperature readings. Ruler Different rulers have different systematic and random errors. Same ruler is used to measure all the strips of magnesium strip. Time interval between each reading of temperature If readings are taken inconsistently, maximum temperature might be incorrectly determined because

  1. Finding thr Percentage Composition of Magnesium Oxide

    Bunsen burner clamped to the retort stand 7. Clay triangle 8. Tongs 9. Dropper bottle containing distilled water 10. One 8cm strip of magnesium ribbon 11. Spark lighter Procedure The materials were selected and brought to the station. Safety protocol was followed and safety glasses were worn throughout the experiment.

  2. Chemistry Investigation to find the Empirical Formula of Magnesium Oxide

    4 33.979 - 33.834 = 0.145 5 39.264 - 39.113 = 0.131 6 32.823 - 32.784 = 0.039 *Some data has been removed in the following tables due to lack of validity Table 4 - Processed data of the total weight of magnesium and crucible (g)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work