• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Enthalpy of Combustion Lab Report

Extracts from this document...

Introduction

22/9/2008 Dhruva Mahimtura Enthalpy of Combustion of Ethanol Aim: The aim of the following experiment is to determine the enthalpy change of combustion of ethanol when one mole of ethanol is burned completely with the help of a spirit lamp for a time period of one and a half minutes. Background: Specific Heat Capacity is the amount of heat required to raise the temperature of 1g of a substance by 1K. ? � Differs from substance to substance. ? � Water = 4.18 J g-1 K-1? � Ethanol = 2.4 J g-1 K-1 The data booklet value for the standard enthalpy of combustion of ethanol is -1371 KJ/mol. Apparatus: Instrument / Chemical: 1. Spirit lamp containing ethanol 2. Copper Calorimeter 3. Distilled Water 4. Stop Watch (?0.01s) 5. 1?50cm3 beakers 6. Retort Stand 7. Digital Thermometer (?0.1) 8. Digital Electronic Balance (?0.01g) 9. Stirring rod Method: 1. The mass of the spirit lamp containing ethanol is first determined accurately with the help of the digital electronic balance and is recorded as M1 (?0.01g). 2. Then a copper calorimeter is taken and the mass of the empty calorimeter is first determined. Then the calorimeter is filled with distilled water and the mass of the calorimeter along with water is then recorded. The two readings are then subtracted to determine the mass of the distilled water used in the experimental procedure with the help of the digital electronic balance and is recorded as M3 (?0.02g). 3. Then the calorimeter containing the water is placed on top of the retort stand and the digital thermometer is used to ...read more.

Middle

Raw Data: Initial mass of spirit lamp = M1, Final mass of spirit lamp = M2, Mass of distilled water used in the experimental procedure = M3, Initial temperature of water = T1, Final temperature of water = T2, The following table N1 shows the raw data that has been recorded in order to determine the enthalpy change of combustion of ethanol while conducting the following experimental procedure: Sr. No. M1 (?0.01g) M2 (?0.01g) M3 (?0.02g) T1 (?0.1) T2 (?0.1) 1. 168.50 166.85 121.16 - 42.94 = 78.22 27.2 38.2 2. 166.85 165.61 121.02 - 42.94 = 78.08 37.4 45.4 3. 159.00 157.50 126.26 - 43.53 = 82.73 26.5 36.2 4. 157.50 155.75 126.08 - 43.53 = 82.55 35.8 45.8 5. 155.75 154.44 125.83 - 43.53 = 82.30 44.3 51.1 Processed Data: Mass of ethanol that has been used and burnt completely = M1 - M2 = MF, Rise in Temperature of the distilled water when the spirit lamp is placed directly below the calorimeter = T2 - T1 = TF, The following Table N2 gives the values of the mass of ethanol that has been used and the change in temperature of the distilled water solution. Sr. No. MF (?0.02g) TF (?0.2) 1. 168.50 - 166.85 = 1.65 38.2 - 27.2 = 11.0 2. 166.85 - 165.61 = 1.24 45.4 - 37.4 = 8.0 3. 159.00 - 157.50 = 1.50 36.2 - 26.5 = 9.7 4. 157.50 - 155.75 = 1.75 45.8 - 35.8 = 10 5. ...read more.

Conclusion

3. It is assumed that the glass stirrer, the digital thermometer and the calorimeter were not absorbing any heat but in reality these instruments are also being heated. 4. It is assumed that none of the ethanol escaped through evaporation during the time the flame was extinguished and the spirit lamp and its contents were reweighed. However, ethanol is a volatile liquid and the fact that the spirit lamp was hot indicates that some of it would have evaporated. Conclusion: In the carried experimental procedure one has determined the enthalpy change of combustion of ethanol when one mole of ethanol is burned completely with the help of a spirit lamp for a time period of one and a half minutes. One has successfully proven the hypothesis that has been made earlier. I had predicted beforehand that the reaction-taking place in the experimental procedure is an exothermic one. The fact that heat is given out when ethanol is burnt has been depicted by the temperature rise of the distilled water present in the calorimeter. Hence it is clearly evident that the combustion reaction of ethanol is an exothermic reaction. Suggestions for Improvement / Evaluation: 1. There should not be any disturbance in the room where the experiment is being conducted as one is trying to prevent any interference to the internal system. 2. While conducting the experiment, one should use a shield like device in order to cover the entire apparatus and prevent any heat transfer between the surrounding and the internal system. 3. More efficient equipment should be used in the conducted experimental procedure. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Lab Report - Flame Test

    Observations:- Metal Salt Colour of the Flame Sodium Chloride Golden yellow Sodium Carbonate Golden yellow Sodium Sulphate Golden yellow Lithium Chloride Red Potassium Chloride Lilac

  2. Enthalpy Change Design Lab (6/6)How does changing the initial temperature (19C, 25C, 35C, and ...

    2. Safety goggles and latex gloves were worn at all times during the investigation. The investigation was conducted beneath a fume hood, and on the same day. 3. A clean, dry, polystyrene cup was placed into another, so that the top one was stably lodged into the lower one, and placed on the electrically powered magnetic stirrer.

  1. Enthalpy of Combustion of Alcohols Lab

    * Record all data and process it. HOW TO PROCESS DATA: After we have collected all the data, we will use the formula n = m/M to find the moles of alcohol burnt Then, we will use the formula: Q = mC?T to calculate the heat energy given out by the alcohol.

  2. Hesss Law Lab, use Hesss law to find the enthalpy change of combustion of ...

    190 22 200 24 210 26 220 28 230 30 240 31 250 32 260 33 270 34 280 35 290 36 300 37 330 37 360 38 390 39 420 39 450 38 480 38 EXPERIMENT 2 B time/s(�1sec)

  1. IA - Lab Report. Aim to prepare a sample of p-nitro acetanilide from the ...

    Volume of concentrated sulfuric acid -10 cm3 Volume of fuming nitric acid -10 cm3 Volume of Methylated spirit -20 cm3 The crude product is a dull yellow and becomes thick before the Methylated spirit is added to it. UNITS * Weight of a substance - gm * Volume of the

  2. The aim of this experiment is to examine the enthalpy of combustion of the ...

    Qualitative data Mass of methanol Mass 1 Mass 2 Mass 3 Average mass Initial mass g ± 0.01 133.47 136.52 138.42 136.13 Final mass g ± 0.01 132.15 135.31 137.39 134.95 Mass of methanol used g ± 0.02 1.32 1.21 1.03 1.18 Ethanol ( C2H5OH ) Time ( s )

  1. Determination of Heat of Combustion of Ethanol

    This is probably what led the result to be so much smaller. The experiment was not conducted under STP which is another cause for the large uncertainty. Evaluation 1. The major cause for the systematic error was the fact that the can absorbed heat.

  2. To determine the standard enthalpy of formation of Magnesium Oxide using Hess Law.

    parallax errors of different magnitudes could be introduced introducing unwanted random errors (inconsistent systematic errors). 5. Each time the electronic balance was used, it was appropriately tarred to prevent any zero errors. RAW DATA COLLECTION: The following tables contain all the raw data that was recorded in the lab while performing the experiment.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work