• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Enthalpy of Combustion of Alcohols Lab

Extracts from this document...


MOLAR ENTHALPY OF COMBUSTION OF ALCOHOLS Lab Asad Ali Tayyab IB HL Chemistry 2 Grade 12 Lab Work Block 8 Mr. Graham MOLAR ENTHALPY OF COMBUSTION OF ALCOHOLS AIM: The purpose of this investigation is to use calorimeter to determine the molar enthalpy change in the combustion of each of a series of alcohols (Methanol, Ethanol and Butan-1-ol) RESEARCH QUESTION: How do the molar enthalpies of combustion change as the alcohol molecules become larger from methanol to ethanol to butan-1-ol? HYPOTHESIS: I think that as the molecules become larger, the enthalpy of combustion will increase. This hypothesis is based on my assumption that as the molecule becomes larger, more bonds are added to a substance. The more the bonds, the harder it is to separate the molecule and the more energy is required to combust the substance. INTRODUCTION: The molar enthalpy of combustion (?H) of a substance is the change of enthalpy, when 1 mole of a substance in its standard state (298 K and 1 atm pressure) is burnt to form products in their standard states. ?Hc may be calculated from standard enthalpies for formation of each of the substances involved in the combustion reaction, or can be estimated from bond enthalpies. Enthalpies of formation are usually obtained directly from combustion experiments. ?Hc is measured in calories. ...read more.


+ (5 x 1) + (16) + (1) M = 46.0 gmol-1 m = 1.06 g n = 1.06g/46.0 gmol-1 n = 0.0230 mol Step 2: Calculating heat energy given out Q = mC?T m = 100g C = 4.186 Jg-1k-1 ?T = 11.0k Q = (100g) (4.186 Jg-1k-1) (11.0k) Q = 4604.6 J Q = 4.60 kJ Step 3: Calculating the enthalpy of combustion ?HC = Q/mol ?HC = 4.60kJ 0.0230mol = 200 kJ/mol However it is exothermic, that is why it has to be negative = - 200 kJ/mol Step 4: Calculating the uncertainties Uncertainty for mass of alcohol combusted = (0.02g/1.06g) x 100 1.78% Uncertainty for volume of water: (0.05cm3/100cm3) * 100 = 0.05 % Therefore uncertainty for mass of water: 0.05% Uncertainty for change in temperature = (0.02/11.0) x 100 = 0.18% Total Uncertainty = 2.01 % ENTHALPY OF COMBUSTION OF ETHANOL = - 200 kJ/mol � 2.01 % BUTAN-1-OL: Step 1: Calculating the number of moles of Butanol combusted n = m/M C4H9OH M = (4 x 12) + (9 x 1) + (16) + (1) M = 74.0 gmol-1 m = 0.29 g n = 0.29g/74.0 gmol-1 n = 0.00390 mol Step 2: Calculating heat energy given out Q = mC?T m = 100g C = 4.186 Jg-1k-1 ?T = 11.0k Q = (100g) ...read more.


This was an error as methanol and ethanol are volatile liquids and the fact that the alcohol lamps were hot after the combustion indicates that some of the alcohols would have escaped which increases the uncertainty in the labs. In addition, one other reason that could affect the results of our lab is that the beaker might have absorbed some heat. The beaker was made of Pyrex glass and certainly absorbed some heat. This means that before the temperature of the water started to change, the beaker might have absorbed some heat and this affects the results as some energy is wasted in this process. Similar to this was the stirring rod and the thermometer which absorbed some heat as well further making the experiment less accurate. Furthermore, random errors certainly played a part in affecting the results as we had uncertainties for mass, temperature and volume. Even though random errors were comparatively small to affect the result, nevertheless, all these uncertainties add up to be large enough to affect the results of the lab. For random errors, we can take certain measures to reduce the uncertainty and increase the accuracy of our lab. Also, we can measure the mass of water to try and reduce the uncertainty due to our assumption made of the density of water. For lowering the uncertainties even more, we can use a digital thermometer so that if the thermometer has a lower uncertainty, the percentage uncertainty will decrease. ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Enthalpy of Combustion Lab Report

    The stopwatch used for each trial has also been kept constant throughout the experimental procedure. 4. The thermometer used for each trial has also been kept constant throughout the experimental procedure. Observations: 1. The ethanol was burnt with a yellow flame.

  2. A comparison of various proprieary antacids

    I would therefore like to reject my hypothesis because as clearly seen from the results, the Actal Tums were almost 16 times more effective than the Zolicid gel, and the Eno tablets were about 3 times more effective in terms of the number of moles of hydrochloric acid neutralised, in comparison to the Zolicid Gel.

  1. Enthalpy Change Design Lab (6/6)How does changing the initial temperature (19C, 25C, 35C, and ...

    and KOH(aq) in a doubled polystyrene cup. Since molar enthalpy is determined through a few different values that need to be collected during the investigation, the steps taken to determine the molar enthalpy of the reaction of 1.00 mol dm-3 HCl(aq)

  2. Airbag design lab. Is it possible to use baking soda, NaHCO3(s), and 2.00 ...

    measured in the beginning (this is because the HCl will occupy the space of the bag once it is added) 8. Using the ideal gas law again, plug in the new subtracted volume into the formula to figure out the moles of NaHCO3.

  1. Titration Lab

    Pipette: For each drop from the pipette, there were same amounts of solutions, but since it is made by human hand, there should have been a slight difference in each drop. 2. Temperature: Although I have done this experiment in one class period, there were slight changes in the weather, causing the temperature to change.

  2. The aim of this experiment is to examine the enthalpy of combustion of the ...

    Light the burner and measure the temperature changes of the water for 120 seconds, every 15 seconds write down the temperature measurement in the previously prepared results table. 4. After 120 seconds turn off the alcohol burner, but keep measuring temperature changes for next 90 seconds and recording them every 15 seconds.

  1. Determination of Heat of Combustion of Ethanol

    To improve this, I could have used a calorimeter so as to reduce the heat loss and so that I could calculate the amount of heat lost to the surroundings.

  2. To determine the standard enthalpy of formation of Magnesium Oxide using Hess Law.

    all the three trials in part Y ? reaction between MgO and HCl. Table 3: Chemicals required for the experiment. PROCEDURE: 1. Setting up the calorimeter ? Two Styrofoam coffee cups were taken and one was placed inside the other with a rubber band in between the cups to create an air gap.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work