• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating Quadratic functions

Extracts from this document...


Math Assignment: Investigating the Quadratic Function

Algebra II

Dr. Garciano

18 September 2008

        The purpose of this math assignment is to investigate quadratic functions and to be able to understand how constant terms and coefficients in functions affect the final product of a graph by displaying the results using different families.

        A good example to start this investigation off is by graphing functions in the family y=x²+k where k is a constant term. After doing so, I will state the coordinates of the vertex for each function using the data shown on the graph.  


Looking at the graph above, you could see that there are three different functions displayed. From looking at this, you could determine the vertices for each of them. The coordinates of the vertex of each equation are:

y=x² : (0,0)

y=x²+3 : (0,3)

y=x²−2 : (0,-2)

Also, the significance in the constant term k can be viewed from the 3 equations on the graph. The position of the graph would vary depending on its value. This is because k in the equation y=x²+k is represented as the y-intercept. Therefore, k will affect the position of the graph vertical-wise. However at the same time, the value of k will not affect the shape of the graph because you could see that they’re all the same and because there is no variable that determines it.

...read more.


image05.png             The shape of both graphs is the same since there is no variable included in the equation that could affect it and because they both look identical. However, you could see that the vertices of both equations are different. You could see from the graph that the vertex of the function y=x² is on the origin (0,0) and the vertex of y=(x−2)²+3 is (2,3). Therefore the positions of the two parabolas are different.

 In order to understand more about the family and to certify that my comment is correct, I will use another demonstration by using the function y=(x+4) ² -1 first without using the assistance of technology with y=x².


In the equation y=(x-h) ² + k, h represents x-coordinate of the vertex, and the k represents the y-coordinate of the vertex. Therefore the vertex of y=(x+4)²−1is (-4,-1). The shape of this graph would look exactly the same as a graph with the equation of y=x².

Now I will illustrate it using technology.


 Again, the shape of the graphed equations are the exactly the same since there is no variable in the equation that will affect its shape. On the other hand, the position of y=(x+4)²−1 is very different from y=x² since the vertex of it is (0,0), and the vertex of y=(x+4)²−1 is (-4,-1).

...read more.


Now , I would like to use compare using coefficients on the family y=ax² (y=2x²), and also on the family y=a(x-h) ² + k (y=2(x-1)²+3) where a is the coefficient of the x ² and (x-h) ² , however first without using technology.


After sketching the graph, I could see how coefficients affect the family y=a(x-h) ² + k. In order to obtain coordinates of the vertices for y=a(x-h) ² + k, I put the variables (h,k). Using this method, the vertex will be: y=2(x-1)² + 3  (1,3). The vertex of the family y=ax² is always at the origin which is also what I learned through this portfolio.

This time I used technology to get an accurate graph.


From the 2 previous graphs, I could that both of the parabolas’ openings are facing upward and have the same wideness since both coefficients are identical. However the position of Equation 2 is different from Equation 1.

Through the long series of experiments made in this portfolio, I was able to comprehend the significance of constant terms and coefficients and how they affect different types of families. Some of those effects are shape, position, and the direction of the openings. Also, I was able to interpret specific functions smoother by the end, and I basically was able to understand more about quadratic functions. I am sure I could imply on what I’ve learned through this assignment to problems in the future.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    ��Ө�2:#�(tm)�V�B��Q:"L�"1�I�[0�0�%�b�e�e1/2Â���������]�x �)|N"Y,S|V�V�E�N�O���-R��i�~Õ·jk���Z'��:ƺ�z-�� ��F%�&]���^��Y�Z��l�m�v)�i�:X8�:98;"�����"{xx�����������@��5��W � � b ��S�"1/4 }vY�""��D'�Pb �8�3/4�&"&F&Y& %o�<Km�{0�']-� Y[׳ �����0�����-:|P;�5o3}X�H�Q�cW�o�K��-'/U(S*W(r)P(c)T9(c)Z�y��t�(tm)��5,��1/4�"Χ��6o�1/4p(r)(c)�����-�K��\��6�&�-�Q����ì­n�[ =.1/2...}s���w-�};�x�@d��p죰��j�1/4c4ckO��>���k���[/z'"_�1/4:�:������'w���+g�}�?�<>����"�y���;_j��] Y�]V�*�Mb��{����o686ݶj��w�'%:��>@bP$�s���2* �}#����dq_�}"*�4�?��'Î�-!�1�\�4��U�Í1/2���Û�0�0?I�^�ÐQ�D,A1/4N��7iqYe9 y %E %^eH�� �[ jtj6hUh�����ַ504T3'56�4e0Ú��/Z�XNX Yw�\���Ud-c�@q�s�u-rawŸ.�1/2t��g�W�-/oi ��+�^�Ú���A6�rTF�×��mae��n'�Q��[1E��q*��"s��I&����)WR3�ڦq�}L��8''�m�x��~�\�R E� q�"� �l|?�tl��Z(r)��"x�Z(c)q(tm)]�� Ê"iU N�>y�Ù�Ñ�su����[^4n5 4�\ n9r(c)��-"*��>n'u�tR"ʯ?��ݭr+�����m�~��"����æ"-z g?jy6�S~�4g1/4�Y�Ä4"r/�^%�>�����;...�Wg-g���k>3/4Y����_�K _eV�"4k��O׷�Û�i`�Ԧ��>"...� ��4��E'P��8t!FÓ��'q�� �4|4k�'��st��... G �L��XY_��q�9e�L�)<{yK�.� <��,1/4,��dM�}�$�IyH��@2���r��- � "��Ju��*Ϊ�j��"z�F���-�֦��N�n���>������9�tcYS��K�k�,|,U��VSÖ­6y�^H���=�or�tttq��<�R���Nt��;��Ü����>V6ʴ�E��Æ�� �`-*�:R�&��'iE��>c���Ë×_OhO�M'M�O(r)M�N�L}�� �<N��H�4���ZÏ�7�syenÎ�.y��D�I�+�_-�]�x��X���Â��b$-(�.�.�*�� V��t��<e}��L�٪ê/�X���[�;4�7�3/4��t�y1/2��R��7W�(r)%���;;˺&o� �3/4����w"�k ��� �1/2��O�$fO��<-�{�2~p��y����(tm)S6���:_1/40��|���-v��*�Lp)�Q���#��6v$�4�Q �Q��g���ޱÔ$z`'�a...BG ����Z�71/4(r)���(N"*u Õz�&�U��t'zÂ1��#U�-k�M�^���qÞ¸S��xA|0�~"`M8C�NcG�L$#����gIDRi�Ξ(r)-^'3/4-���#�q?&g3a����YDX(r)��N�E���k9�8�s-�'�zÊ�#��'��Ïo"�K EPW#�H��H���Y�x�D�d�T���������1/4(r)��b��>$�*��(c)}���4�J�n�y�ǡ�jPn��X�$��9�E�� "R�}�m��]��B�(c)

  2. LACSAP's Functions

    Finding the Denominator Whilst it took a bit of trial of error, I found that the difference between the Numerator and the Denominator were following a pattern similar to Pascal's Triangle, eg. In this grid, I have replaced the numbers with the differences between the Numerator and Denominator to clearly see the pattern.

  1. Investigating Parabolas

    a = 2, D = 0.5 or 1/2 iii. a = 3, D = 0.33 or 1/3 iv. a = 4, D = 0.25 or 1/4 v. a = 5, D = 0.20 or 1/5 Clearly, there is pattern. According to the results that I have, I can make the conjecture.

  2. Math IA Type 1 In this task I will investigate the patterns in the ...

    It is given that parabola intersects the lines y=mx+d and y=nx+e. Therefore in order to find D, their intersections must be found. Their intersection can be found be equation the function of the parabola and the function of the line.

  1. Parabola investigation. In this task, we will investigate the patterns in the intersections of ...

    0.451 > x2� 0.500 > x3� 5.000 > x4� 5.550 Calculation of SL and SR: SL = x2-x1� 0.500- 0.451� 0.049 SR = x4-x3� 5.550-5.000� 0.550 Calculate. � 0.5 The results of investigating different real values of a and placement of the vertex : Parabolas a b c D -1

  2. Parabola investigation. The property that was investigated was the relationship between the parabola and ...

    The following is the table which shows the values of D. The value of a The value of D 1.12 7.14 1.13 7.08 1.14 7.02 1.15 6.96 1.16 6.9 From this a visible pattern can be observed. That is ? with every increase of 0.01 in the value of a,

  1. This assignments purpose is to investigate how translation and enlargement of data affects statistical ...

    The following data achieved is shown below: The mean and standard deviation of multiplying each height by 5 would be 764.5833333 as the mean, and 85.43658304 as the standard deviation. b) To find the mean and the standard deviation if I multiplied each height by 0.2.

  2. In this investigation, I will be modeling the revenue (income) that a firm can ...

    values of the price and quantity demanded into the equation, and then solve it to be left with c. 1. P= -0.75Q + c 2. 4.5 = -0.75(2) + c 3. 4.5 = -1.5 + c 4. C = 6 Again, using my GDC I also substituted the values of

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work