• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Math IA patterns within systems of linear equations

Extracts from this document...


Math HL Investigation – Maximilian Stumvoll

Math HL Investigation

Patterns within Systems of

Linear Equations

Maximilian Stumvoll



Part A

We consider this 2 x 2 system of linear equations:



Looking at the coefficients in the first equation (1, 2, 3) we notice a pattern. Adding 1 to the coefficient of x (1) gives the coefficient of y (2) and adding 1 once more gives the constant (3).A similar pattern exists in the second equation. Only, here we add -3 to the coefficients. We can say the coefficients follow an arithmetic sequence (AS). An arithmetic sequence has a common difference (d). This is the difference between two consecutive terms of the sequence. The first equation has a first term (a) of 1 and a common difference (d) of 1. The second equation has a first term (b) of 2 and a common difference (e) of -3.

In order to solve this system of equations with the method of solving simultaneous equations by elimination, we need to multiply the first equation by 2. Then we can subtract the second equation from the first equation:

As proof we can solve the simultaneous equations by the method of substitution. Rewriting the first equation as

 and substituting for x in the second equation gives:


This we can solve for y:

Substituting this y-value into the second equation gives:

...read more.


 we can say

Now we have three equations for t which we can set equal.


This is the equation in which all planes of system (1) meet.

General conjecture

Because all of the panes graphed before intersect in the same line we can come up with the conjecture that all 3 x 3 systems of equations where the constants follow an AS intersect in the line image00.png


In the general model of 3 x 3 system a, b and c are always the first terms and d, e and f the common differences.

This system we can solve by row reduction:

As R3 000=0 we can say that the planes meet in one line. If we assume

we know from R2:

From that we get

        and        image00.png


Now we can substitute for y and z:

Now we have three equations:

          and        image00.png


The all equal t so we can say:


This is the same equation as we got before and the algebraic proof that all the planes intersect in that line. No matter values a, b, c, d, e, or f have, any 3 x 3 system of equations where the constants follow an AS will intersect in the line image00.png

. We have proven our conjecture to be true.

Part B

This is a new 2 x 2 system of linear equations:


...read more.



General solution to 2 x 2 system with constants that follow a GS

We can produce a general model for a 2 x 2 system of linear equations where the constants follow a GS if we say a is the first term and r the common ratio in the first equation. In the second equation b is the first term and q the common ratio.



This system of simultaneous equations we can solve by elimination. We can divide out a in the first equation and b in the second equation. So we subtract what we end up from the second equation from the first equation:




Now we can substitute for y in the first equation. This gives us:



Proof of the general solution

To prove this we consider the 2 x 2 system of equations

In this system r=2 and q=-1/2. Using the two formulas for x and y we received above we get:




        ->        image00.png

If we now solve the system by elimination for x and y:

Substituting x = 1 into the first equation gives us:


We received the same solutions. This tells us our formulas for x and y in terms of r and q are correct. We can say that the solution to any 2 x 2 system of linear equations where the constants follow a GS will be:

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    B �F<ÝÛ­-��Õ1/4W1/2Ⱥ1���c?2�� Q�b9 �Ӹi21Ú`(c)�?���[K2�jEQ-�"UK�TTM�����0f��y...�:�c��W~&� �_�@;~TK�(c)�b��@ku_I]@���+CÛ¤ m� ���V1/2a-yCg��sJ �m�Þ1I�`�0 �#�×+�n�..C�#w�l#|� �G�3å`�(r)� �"o-dJ�&Fگ�-'�*�X�"�"E?(tm)�/�6rqo�ǯC�;��}�Q��M(r)��]�w�v+�zW� "���'����j�"��-vfqf-��¦ï¿½ �ɲ"Oe� �z-S�˴1/2�è±-��\��?s��i�1/2_P�W�0r'� ��T� 8��9"W�?l>�ÞY_Ð(���:"0��ddM�TÊsa��s�a��|*:3>���BWbF���sRv���ط��� 5 Nk o�.�(c)1��(c)L�:"h w����D"@)��1/2��(tm)��^f��|�,�+T��H��""f'ê£ï¿½H�*@�"Gçe��3��[u�sø�"#S�:(tm)E�z�)w"�� d�-"a~1/2E2Jr�T�&j3�b�Ds�}���-�$"�m�T:3�z@�B���E� ?�\ 1}z�Ð0E���8�v (r)�PFbCD$@ 2lY�A! ^�7�2�3/4��?u�0��(tm) ^Cb�^�r�B�;��� L�@&8+�"'� ��"_@����fa�0� �������e�RG�lnfA2 �,�wK� 1/2"t�&P�`�%$?���M��C=�a- �"?���"����+���...r�Y����4.�_���\��$��//[�V�a�,��J�(c)i dd� q�;qpy��������yV���f\�K<[��<���; )�\� O�K���:�`ܶ� �Z�m�����%!B<dR}�%�.F��Yìx��2��ض���I�1/2��FC��:[��,��� ^"H����p�P����x4�� s)�bC�nh��@U$"���q �<'�=�p�.1�2ڴ��ʱ���aËb1/4���F���7���ɵi2j`�6...��B �T�MW� �b�� ��(tm)

  2. Math Studies I.A

    Palau 8,100 70.71 572751 65610000 4999.9041 Papua New Guinea 2,200 65.66 144452 4840000 4311.2356 Peru 8,400 70.14 589176 70560000 4919.6196 Poland 17,300 75.6 1307880 299290000 5715.36 Puerto Rico 17,800 78.54 1398012 316840000 6168.5316 Romania 12,200 71.91 877302 148840000 5171.0481 Rwanda 900 46.2 41580 810000 2134.44 Saint Kitts and Nevis 19,700

  1. Math Studies - IA

    The margin of a team's win is suitable. This will be measured in how many times greater a victory is. So to compare a European Ryder Cup win of 181/2 - 91/2 (number of points) with a US major win the same year of 72.5 - 73 (mean number of strokes.

  2. Math IA - Logan's Logo

    In fact, we already determined this when we found variable a. (Recall that we divided the total height of the curve by 2 to find the amplitude). The total height of the sine curve is 6.3 units, and divide this by 2 to get 3.15 (variable a).

  1. Math IA - Matrix Binomials

    B3=(2Y)3: B3=B2?B = = = When b=2, i.e. A4=(2Y)4: B4=B3?B = = = When b=-2, i.e. B= -2Y: B= -2 B= When b= -2, i.e. B2=(-2Y)2: B2=B?B = = = When b= -2, i.e. B3=(-2Y)3: B3=B2?B = = = When b= -2, i.e. B4=(-2Y)4: B4=B3?B = = = When b=10, i.e.

  2. A logistic model

    Graphical plot of the fish population of the hydroelectric project on an interval of ca. 1x102 years (order of magnitude) using the logistic function model {17}. The model considers an annual harvest of 9x103 fish. A stable population (3x104) is reached after over 100 years (thus the order of magnitude).

  1. Math IA Type 1 In this task I will investigate the patterns in the ...

    3.Now I will look at different values of a [i.e. even negative values of a because so far I have only analyzed positive values of a] and I will also look at placing the vertex in different quadrants. First I will look at different values for a.

  2. Gold Medal heights IB IA- score 15

    Additional data is plotted of the Olympic Games from 1896 to 2008. Table 2 Year 1896 1904 1908 1912 1920 1928 1984 1988 1992 1996 2000 2004 2008 Height (cm) 190 180 191 193 193 194 235 238 234 239 235 236 236 Table 2 shows the gold medal heights

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work