• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

Math IA Type II _ Modelling the Length of a Fishing Rod

Extracts from this document...


Mariya LupandinaSummative. IA Type II: Fishing RodsMay 14, 2012

An efficient fishing rod requires numerous guides to ensure that the line casts easily and does not tangled. A mathematical model can be used to help predict the optimal placement of guides in order to achieve a successful launch. In this investigation, an appropriate model will be found that can mathematically show the placement of the line guides. We have been provided with Leo’s fishing rod, which has an overall length of 230 cm and eight line guides, plus a guide at the tip of the rod. The distance for each line guide from the tip of Leo’s fishing rod is shown in Table 1, below. This investigation will develop mathematical models for the placement of the line guides using a quadratic, a cubic, and a polynomial function, as well as one other free function. To graph these function we will use the TI-Nspire Student Software, and the TI-Nspire CX will be used for calcualtion. The developed quadratic model will be further tested by applying it to Mark’s fishing rod.

Table 1. The number of guides and there respective distances on Leo’s fishing rod

Guide number (from tip)









Distance from tip (cm)









Ninth guide on the tip (0,0)

        Prior to beginning the investigation it is pertinent to define the suitable variables and identify any parameters or constraints in relation to the fishing rod. In this investigation our independent variable, defined as x, is the guide number (from the tip); and our dependent variable, defined as y, is the distance from the tip. The distance from the tip will be measured in centimeters; the distance is therefore a continuous variable since it is uncountable.

...read more.


Using the GDC we are able to find the following values:

By approximating, to three significant digits, the following are the values for the four unknowns: a0.0571, b0.486, c11.3, and d -1.86; resulting in a cubic model function of:

y 0.0571x3+0.486x2+11.3x-1.86


g(x) ≈ 0.0571x3+0.486x2+11.3x-1.86

The comparison of the cubic model function with the original data points can be seen in Graph 2.

Graph 2. Comparison of quadratic model and cubic model with the original data points

Distance from Tip (cm)

image01.pngGuide Number (from tip)

        From Graph 2, above, it can be seen that the quadratic function only passes through the center of three points making the quadratic model far from a desired model function, and the cubic model passes through the center of four points, making it more accurate than the quadratic model. Generally, the quadratic and cubic models are fairly accurate since they pass through almost all of the points, however neither is the desired function for modeling the optimal placement of guides on a fishing rod because they do not pass through the center of each point. Graph 3 confirms this, as we can see that the quadratic function (f(x)) does not even pass through the 6th and 7th guides, and the cubic function (g(x)) hardly passes through both points.

Graph 3. Zoom-in of points 6 and 7 from Graph 2

Guide Number (from tip)

Distance from Tip (cm)


By analyzing the previous two models we notice that the quadratic model, which has three unknown constant, passes properly through three points and the cubic model, which has four unknown constants passes properly through four points.

...read more.


Graph 9.

Graph 9. Quadratic model, ƒ(x)=1.29x2+8.29x+0.429, versus Mark’s fishing rod.

Guide Number (from tip)

Distance from tip (cm)


        The quadratic model function does not fit the new data very effectively. It only passes through two points and completely misses the rest, as its exponential increase is greater. In order to understand the changes that are needed to improve the model we can use a quadratic regression on the GDC to find a line of best fit for Mark’s fishing rod.

The result is as follows:


And the improved quadratic model function is:


One limitation of the quadratic model is that it only applies to fishing rods similar to Leo’s, as we saw with Mark’s set of data, even though Mark’s fishing rod was not very different. Another limitation of the quadratic model is that the model function must be adjusted every time a guide is added to the fishing rod. According to the new, improved quadratic model function for Mark’s fishing rod, f(x)=0.935x2+7.72x+2.05, if a ninth and tenth guide were added to Mark’s fishing rod, they would be placed 147 cm and 172 cm from the tip, respectively. If we were to create a regression of the data, we would obtain values different from the ones above, the new set of values is below.


The new modified function for Mark’s fishing rod is:


Another limitation of the quadratic model is that it does not take into account the length of the fishing rod. A fishing rod with a different length would require more guides, which would result in new data points. Different data points would result in a new curve, which the original model will not fit.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Math IA -Modelling Population Growth in China.

    Make sure that the field labeled X List : is filled out with L1. Make sure that the field labeled Y List: is filled out with L2, press enter. Hit Zoom, scroll down to 0:ZoomFit press enter. This will format your window so that you can view the data on the graph.

  2. Math IA- Type 1 The Segments of a Polygon

    because the value which is squared to form the denominator is one less than n and after it has been subtracted, the value is squared, hence, forming the equation above. Now moving onto the numerator, the following table helps analyze the situation better.

  1. Modelling Probabilities in Tennis. In this investigation I shall examine the possibilities for ...

    Two points after deuce, the probabilities are therefore as follows: Two points after that, the probabilities are multiplied by (because deuce must have occurred again, and so on. The probability of A winning 2z points after deuce is first called is given by: The probabilities form a geometric sequence with first term and common ratio .

  2. Math Studies I.A

    6468.9849 Indonesia 3,900 70.7 275730 15210000 4998.49 Iraq 4,000 69.31 277240 16000000 4803.8761 Isle of Man 35,000 78.49 2747150 1225000000 6160.6801 Italy 31,000 79.94 2478140 961000000 6390.4036 Japan 34,200 82.07 2806794 1169640000 6735.4849 Jordan 5,000 78.55 392750 25000000 6170.1025 Kenya 1,600 55.31 88496 2560000 3059.1961 Korea, North 1,700 71.92 122264

  1. Math IA Type 1 In this task I will investigate the patterns in the ...

    x3 and x5 are intersections of one linear function and the cubic function and x1, x4 and x6 are intersections of another linear function and the cubic function. Therefore the sum of the roots of the intersection of the first linear function and the cubic function would be x2+x3+x5= And

  2. Math IA type 2. In this task I will be investigating Probabilities and investigating ...

    points since, they are the events which are most likely to happen as they have probabilities of respectively. Also I notice that the probability of Adam winning 7 points is greater than him winning 6 points, therefore I think that the mean will be close to 7 than it is to 6.

  1. Tide Modeling

    for the average of the data exactly at the crest and through. At the other points there is a difference between the points. The difference oscillates from a difference of 0.087 to a high 0.725. Therefore in order to have a precise measurement the best degree of accuracy should be to the nearest whole number.

  2. Using regression analysis to solve a real time problem

    53 2 5 75 34 4 2 95 35 4 1 100 53 2 2 85 36 1 5 70 34 1 5 75 27 0 6 70 56 1 3 80 44 0 8 70 53 0 11 75 37 3 1 95 38 2 3 90 43 2

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work