• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Math IB HL math portfolio type I - polynomials

Extracts from this document...

Introduction

Diana Herwono D 0861 006

  1. Let P(x) = a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0.  

Using the sums of (a5 + a3 + a1) and (a4 + a2 + a0), determine whether

P(1) = 0?  and P(-1) = 0?  

Examine these examples:

                    (1) P(x) = x5 - 3x4 + 2x3 + 4x2 + 6x - 10

(2) P(x) = x5 - 3x4 + 2x3 - 4x2 + 6x + 10

            (3) P(x) = x5 + 3x4 + 2x3 - 4x2 + 6x + 10

            (4) P(x) = x5 + 3x4 + 2x3 - 4x2 + 6x - 10

What is your conclusion for the general case when

P(x) = anxn + an-1xn-1 + … + a2x2 + a1x1 + a0?

          Solution:

(1)         P(x) = x5 - 3x4 + 2x3 + 4x2 + 6x - 10

(a5 + a3 + a1) = 9

(a4 + a2 + a0) = -9

P(1) = 0  

P(-1) = -18

       (2)         P(x) = x5 - 3x4 + 2x3 - 4x2 + 6x + 10

(a5 + a3 + a1) = 9    

(a4 + a2 + a0) = 3

P(1) = 12    

P(-1) = -6

(3)        P(x) = x5 + 3x4 + 2x3 - 4x2 + 6x + 10

(a5 + a3 + a1) = 9

(a4 + a2 + a0) = 9

P(1) = 18    

P(-1) = 0

(4)        P(x) = x5 + 3x4 + 2x3 - 4x2 + 6x - 10

(a5 + a3 + a1) = 9  

(a4 + a2 + a0) = -11

P(1) = -2    

P(-1) = -20

Conclusion:

From the above examples, we see that when:

a5 + a3 + a1 = -(a4 + a2 + a0)                 P(1)= 0

a5 + a3 + a1 = a4 + a2 + a0                 P(-1)= 0

                 Therefore for the general case,

if an-1 + an-3 + … + a1 = -(an + … + a2 + a0)         then P(1) = 0

if an-1 + an-3 + … + a1 = an + … + a2 + a0         then P(-1) = 0

  1. There is a conclusion that states:

...read more.

Middle

2k2/m3 - a1k/m2 - a0/m) / (k3/m3)

Therefore, m is a factor of a3.

  1. a-bi is called the conjugate of a+bi, where a and b are real numbers and

i = (-1).  Let a+bi denote a-bi. In other words, a+bi = a-bi.  

Prove that:____________ _____

  1. (a + bi) + (c + di) = a + bi + c + di

(2) (a + bi) - (c + di) =_a + bi – c + di

(3) (a + bi) (c + di) = (a+ bi) (c + di)

(4) (a + bi)3 = (a + bi)3

                                    _        _

If a is a real number, a = ?  0 = ?

Solution:

        _____

Let a + bi = a – bi

       ______________    _____    _____

          (1)        (a + bi) + (c + di) = a + bi + c + di

(a + c) + (bi + di) = a – bi + c – di

                (a + c) + (b + d)i  = (a + c) – (bi + di)

                   (a + c) - (b + d)i   = (a + c) - (b + d)i

               ______________    _____   _____

(2)        (a + bi) - (c + di) = a + bi – c + di

               (a - c) + (bi + di) = (a – bi) – (c – di)

(a – c) - (b + d)i  = (a - c) - (bi - di)

                   (a - c) - (b + d)i   = (a - c) - (b - d)i

            ____________       _____   ______

(3)                (a + bi) (c + di)   = (a + bi) (c + di)

  ac + adi + bci – bd   = (a – bi) (c – di)

(ac – bd) + (ad + bc)i = ac – adi – bci - bd

                   (ac - bd) - (ad + bc)i   = (ac - bd) - (ad + bd)i

                   _______    _____

(4)                                     (a + bi)3= (a + bi)3

(a + bi) (a2 + 2abi – b2)   = (a – bi)3

a3 + 3a2bi – 3ab2 – b3i     = (a – bi) (a2 – 2abi – b2)

(a3 - 3ab2)

...read more.

Conclusion

nxn + an-1xn-1 + … + a1x + a0,  with rational coefficients, where a and b are rational, but √r is irrational, then the conjugate radical, a - b√r, is also a zero of the polynomial.
  1. There is a conclusion that states:

The sum of the zeros of the polynomial P(x) = anxn + an-1xn-1 + … + a1x + a0, with an≠0, is equal to –an-1∕an, and the product of the zeros is equal to a0∕an if n is even and - a0∕an if n is odd.

To understand this conclusion, study the function

P(x) = a3x3 + a2x2 + a1x + a0, with a3≠0, and suppose that x1, x2, and x3 are its three zeros.  Can you see that x1 + x2 + x3 = -a2∕a3, and x1x2x3 = -a0∕a3?

Solution:

If P(x) = a3x3 + a2x2 + a1x + a0 and a3≠0, its zeros are x1 , x2 , x3.

P(x) =x3 + (a2∕a3)x2 + ( a1∕a3)x + (a0∕a3) = 0.                                  (divide by a3)

x3 + (a2∕a3)x2 + ( a1∕a3)x + (a0∕a3) = (x - x1) (x - x2) (x - x3)

       =x3 - (x1 + x2 + x3)x2 + (x1x2 + x2x3 + x3x1)x - x1x2x3

Therefore,  x1 + x2 + x3 = -a2∕a3  and  x1x2x3 = -a0∕a3.

Conclusion:

In the polynomial P(x) = anxn + an-1xn-1 + … + a1x + a0,with an≠0, the sum of the zeros is equal to –an-1∕an, and the product of the zeros is equal to a0∕an if n is even and - a0∕an if n is odd.

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Math IB HL math portfolio type II. Deduce the formula Sn = ...

    a10 = 21 I. 2a3 = a2 + a4 2a5 = a4 + a6 2a6 = a5 + a7 So we get: 2an = an-1 + an+1 Proof: From the general arithmetic sequence formula: an = a1 + (n - 1)d: We know: 2an = 2 [a1 + (n -

  2. Extended Essay- Math

    u���gk�"(c)��@;� gTSYJ%Q3�(c)D�-PY(;3/4�W�h���`��Fh�x=ͣ��R"�.](c)=J1�#6���;�p��3ٯ�rc�Ø�|��+���"j5L��Pf�]:��bU*D��1/4c(����"�-�"��1/4�ᬲ'������nQ,l[`cSG<X���2MÑ· f�/1/2Þ��Q�Í�1N��(r)��^_���\/Ù¥E.<�L 1 �0=��n�lnsa��e�8��9�� " �-�~�����\rqf����`3/4T�(c)��YÑ£r���V�H @� 9��W1/2��|-���J;{�N�w�S�a��5�BO��H�Q�O�3%W �P=;2�& 2AB^5-R(tm)2�L�W���?�\�2�7���[wxhO�"O�`"��]5�"g�S6&z�������Ø��߰��×�����^a)!K�"_"g��7d�'...<YW'��aC(c)��S��4y�:�O���'�^�9m �M5����0O�"1"Ü°1/2....z+���ء"-i���{0�.�(tm) ���g�ct��s�"��XZ��B<��E�w���\,"`� (r)16Õ'�Yp��i(c)��v�qp�}3/4P�tA\pBÏ�1/4 ����O�R�LV� ��Ñ��Ri��G�dYqhL�t2��|?OGf�""�"(&Ym...��Du����Z�X-{b$t��z���}^�l��Ø'mHvq�7�t��\Ï���fiJ�1�����SF�=�G;�/Ѻ�U�m�|�'b ��Zp��Ü����&�h��:x�v"ÑW����4� ��[?1/2yU�*��(tm)o O��?����^���'K���_�� 6�F�S"�'��"B%��"D��2^�"���?��}*"�z���"���A{\�g1/4�TB�0C3/4Ëi9�@-E'�o��k��d�'G��... ya��r?'E���_�/FY�?�h"-'�h=���|��p[_rHO��E"h��/2}�� �u��A1/2�...g���.%'��J�]��a-�(�| ��y Π�(�@���%�3$�aH<��@�H��@�-�Y-��"i8��u�@(r)�-"-R����k��Y�zd �D-�C�=Z��c�!(c)'�XE�8�x�1/4��Ä�|GY�gC� ���tU(˱�(c)�w��Q�s�~j����C�m�?U8� (c)\��-� �V�~�>�g�"�?�"h$1/4��[7���E@� �ɦW���i��0��ej/$(�Ñ��`�<�%A@1/4� ��`�3/4gb��me�C-{-PN������̳X,q��T�+��E�o^ �~x8�r �`Q�3E��-�z��%���_�-w"o����(c)m-��T�-A�0z~P H�q ��x��'h��;u>}���Ô��#"��L{�+�+ ����"��f;"��'����-d�{��{"�R-W��Wy8'X����'Q"�O �1 �Ȳ��-�b��'�� /��](� c�Ë��Q ��/O1 &�l��M'?w��,�(r)�]4���1�-CW�)�(r)i�J 3�y��$^�L1/2F�ٱ�7Õºi�D�����p����xC��#U��'�*�.?}B� �)�Õy�nx!���Y�1/2�I�Rw� �gg���(hs7~�l�-4�+B�z-z-z-�뵸�(tm);���C3/4�8�u� �Y�|;N��"�%�!

  1. Ib math HL portfolio parabola investigation

    Graph 2: Value of a=2 Graph 3: Value of a=3 Graph 4: Value of a=4 Graph 5 : Value of a=5 Graph 6 : Value of a=6 a X1 X2 X3 X4 SL = X2 - X1 SR =X4 - X3 D=| SL-SR| 1 1.763932 2.381966 4.618034 6.236068 0.618034 1.618034

  2. Math Portfolio Type II Gold Medal heights

    The opposite happens if then the graph grows. A represents the y-intercept this is easily explained as the graph has to intercept the y-axis if x=0. So if zero is substituted for x: the expression will always equal 1 regardless of the value of l.

  1. Math Portfolio: trigonometry investigation (circle trig)

    0.2250=0.2250 When 54 is to represent the value of x and 36 is to represent the value of y in the conjecture sinx=cosy, sin(54) would equal to sin(36) Again this should add up to 90 degrees. sinx=cosy sin(54)=cos(36) sin ?=cos(90- ?)

  2. MAths HL portfolio Type 1 - Koch snowflake

    1 N1 = 3 and N2 = 12 Ex. 2 N2 = 12 and N3 = 48 General formula for Nn The general formula can be verified by putting in values from the table Using Graphamatica, I have plotted and drawn this Graph of n vs. Ln Scale X-axis - 1 step = 0.5 units Y-axis - 1 step

  1. Math Portfolio Type II

    Also, note that y = rn and x = un as the variable y can be replaced by rn which represents the growth factor at some year n and the variable x can be replaced by un which represents the population at some year n as inferred from the ordered pairs also.

  2. Shadow Functions Maths IB HL Portfolio

    Considering with roots and its shadow function with roots If we observe the roots of the shadow function (the x-intercepts 2 and 6), and treat them as if they were two opposite points of a circle with centre A, the line passing through A, parallel to the y-axis, intercepts the circle to create two points C and D.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work