• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

math modelling

Extracts from this document...


Aim: in this task I will develop a model function for the relationship between the time of the day and the height of the tide.

Graph2.1 representing time of day against the height of the tide in the Bay of Fundy in Novia Scotia in Canada.


Tides are the vertical rise and fall of the oceans of the world. Tidal currents are the horizontal movement of the water caused by these tides. Tides can be described as the alternating rise and fall of sea level with respect to land, as influenced by the gravitational attraction of the moon and sun.

Other factors influence tides; coastline configuration, local water depth, seafloor topography, winds, and weather alter the arrival times of tides, their range, and the interval between high and low water.

Predicted tidal heights are those expected under average weather conditions. When weather conditions differ from what is considered average, corresponding differences between predicted levels and those actually observed would occur.

Generally, prolonged onshore winds (wind towards the land) or a low barometric pressure can produce higher sea levels than predicted. Whilst offshore winds (wind away from the land) and high barometric pressure can result in lower sea levels than predicted

The world’s oceans are in constant flux. Winds and currents move the surface water causing waves.

...read more.


As it can be seen a sin wave graph has been formed.

The general rule for a sin graph is y   = A sin (B*t) + C

Where A is the amplitude and equals = (maximum-minimum)/2

                                        = (12.3-0.7)/2

                                        = 5.8 = A

And B is the period and equals      13 = 2∏/B

                                         B= 2∏/13

To find C we may take the maximum point so:

12.3 = 5.8 sin (15 * 2∏/13) + C

12.3 = 5.8 (1) +C

C     = 6.5

So the function for the graph is: 5.8 sin( t * 2image02.png/13) + 6.5 = y and lets call it function 1

Now to see how much the new function fits on the original graph we will place the 2 functions together:

Graph 2.1 representing function 1 with the graph of 1.1


The blue curve is of function 1 while the scatter plot is of the original values of the tide.

As it can be seen the graph of function 1 does not fit much on the original values of the tide height.

So maybe if the graph form changed to this form y   = A sin (B*t + D) + C it may fit more on the original graph:

Now D has a rule so we can find it

D = (maximum point + minimum point) / 2

D = (12.3+0.7)/2

D = 6.5

So the new rule is 5.8 sin (t * 2∏/13 +6.5) + 6.5 and lets call it function 2

Graph 3.1 representing function 2 with the graph 1.1


Now this graph will be produced and as it can be seen, this function (function 2) fits more on the original graph than function 1.

...read more.


So if we consider the function in the following shape:

y   = A sin (B*t + D) + C

So     A=5.34




So the general function for December 28 2003 is:

5.34 sin (0.51t – 0.26) + 6.58

Now it is clear that at different days in the year we have different general functions showing the relation between the time of the day and the height of the tide and this is due to many reasons such as:

  • prolonged onshore winds (wind towards the land), increase the sea level
  • high barometric pressure can result in lower sea levels than predicted
  • The position of the moon compared to that of the earth, because the moons attraction to the water this pull causes the water to bulge toward the moon. And at different times the moons position is different causing its gravitational pull to be altered to a certain body of water
  • The position of the sun compared to that of the moon since the sun also has a gravitational on earth, so if the moons position was between earth and sun the highest gravitational force will be exerted and so the highest tide
  • The friction between water and the waters body ground, the higher the friction the lower the tide height
  • The temperature so at higher temperature water expands, increasing the volume of water making tides higher

...read more.

This student written piece of work is one of many that can be found in our International Baccalaureate Maths section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Maths essays

  1. Extended Essay- Math

    .{(r)T(r)(r)a(r)Un-nS�(�r�[Ü<,<z<!<�<=< 1/4�1/4:1/4�1/4�1/47y?�1���...�� �-�s�������p�hx)HT ,�\���+tA�0AXM8H�T��ð¨ï¿½ï¿½ï¿½'v'yQ6Qs�� �/��b�b�b�b�ű�j��U��"�D�D��CIXRE2X�J�'FJ]*B�Z�(c)4��3/4t���72,2V2�2�2�e...d�e���'�'S- ""��'��[�g�wɯ(H(�*T*<V$+�(f(v(.+I*�+�R�TfT�V> ܯ1/4(c)���rQeAUH�[���S5&5[��jC�u� �n�u �8�+iJk�j6j�k�j�k�j�h hS��jO���x��(tm)��ץ�V�3/4����"Ó���o�l gc�j�f�a�f�k"225:d4bL1v2(r)0~e"`hr�d�T�4մ� cfiv��(c)9���y��'...�E�Å%���e...�[+ "".k��ºï¿½...��M"M�.��|W�(r)-���Ѷ��v�v�v������q`t�rht��h�x�q�I�)�(c)�(tm)��ù�y��ȥ�e�U�5�3/4�[�[�;���1/2�}u���"g="=r=&<E="<���������7���"�'u����c�s�g�����_�ß����\�v@a�| v`Q�B�nPI�b�apE�r�Y�éµï¿½]��C��\�Z�����"�Ð�H�Ȥ�GQ'Q�Q���'�-b,c�b�X�Ø8&$9���&A'�2�{�s��$�����d��1/4�""s(c)�T��1/2�{��3/4I�O;� ����gf�d�f�f�g�B�-d�ef�粯+�;'3gf�� ���1�Oh-8}}0��H�b^y��!�C����K�-�=|�'�#�#GU��:�=ql���B��"�(tm)"뢶b3/4�C�_Ox��[�Tr�"X_:]fU�Q.T~��gEP�"J��-"\'�N(r)U�U���;u�4���?��(tm)<kz��Z���["P�3/4ֹ��9�s uu�u��#�O���4�644r5-1/2_������4�l��qQ���--�K�R��-1/2/O\�1/4�U���k��N�2�-j��'�-ÚÚ§;�:-uZt�wiv�^-�~3/4��"��=Ä���)7W{�z��f�1/2��n��z<`702h98t��;�wn iu�ո�yO�^�}��m��í"�����=T}�1�>�H�QÏ�X߸�����?�y�h�ib�(c)���I��ga�-�'<ß�|�yq�%��'W\��_��n(tm)V(tm)3/4�����[�*S33/43��3/4�9��3/4d�w(r)a^a3/4{�da�����>n,�~b�t���k�51/4�4"�1/41/2r� �-�_�3/4���(r)3/4��mc��w���j�w~����H���Y�)3/4Ùµe��b;|{;�C�� � �r-�Ý�a"���OC!� ��-�d[ZH�VF � ��0 � �Q+�|�f[... �D��$�Ef ��3��a8Ky�����r... ������Ëdz���_PC�"h�Ø"�d�4����U� M�X���*oT��i484%�Դ�tlt��� r K��"L�(tm)>7�7_�D[�[sÙ�'*Õ°3�7w�q�wrrvqquussww������3/4����Ûj�c�"��/��" ���&�q��V^���:�C�Õc���-P�(tm)d',�1/4(tm)�4�e�4�t� Z�n]�*� ڧ�Ø3��'��@�A�<-1/4�|�a�#�GÕ]93/4Y�[,yB�D(r)T3/4L�\(c)B�R��J��)"�g��N�0���8�R��p1/4��¹ï¿½-�Î�Z�.}��5��h�x{XGYg[���s�[=,7�{�� �� �+o?��fh�-�3/4���'Øa�N�T�xÆ��g�<����k�����}S=/Z^-��`�}z�����(tm)�w�����K�_�`�Qq'�����ϵ�....,Û¬(}�*3/4��"�z��?�7]�j��w��''%Ú��C�P$� s��� * �}Ï���dp_�"*bÉÆ�@�J�CÏO(c)ge��"���V��"�e�}�g"��o'p\pT�$b,� V'�H�"1/2���'����1/4���"�1/22��Ue�VC� �Z��(c):!�"�l� T e�"�9L�M��fK�"-�V=�-l�w�����Slu�$��\0.�(r)/Üܯ�>�'�"����[��H���ҷϯ�`@h u�l0C�-�'�mae��(r)'*Q"�...�1E�~q��"s��I��L�3)WR3�ڤq�}H��8''e�m"X��~�\�' ...�x��S "� �l|;�|l�z(r)��"X�j(c)Q(tm)m��Ê"iU N�>y�Ùê±ï¿½s�u-���[�7n5�7_ j9r(c)���"���>j'whww�_��1/2Ý£|3�����-�1/2���w���.�'+>p�~�4�t ;(r)���I�D�Ó�ωS�/_&�:�����[�(tm)�wWgW��j>1/4^���_K� _�W)k�u��Ç׷���X�0Cj�Rp�B��qhÖϢȨ�h�#����(�"��"/q��|���(r)��(C!���S��+�uv �4� �{/O)�E3/4~�����"V"-��iR�_���>Iw)YiHzL�V6Q�B�O~MaD�N)]�IEJV�TkV��p�"����(r)�IԵ���[�68g�n�l,c�1yaz�ì¹*...�%�rڪ�:����gvM�(tm)

  2. Investigating Sin Functions

    However, the increasing B values still shrink the graph, coinciding with my initial conclusions. We have to consider the negative values as well - how do we avoid confusing the numbers and thinking they're negative, when they're actually reflecting? Again, we have to use Absolute Value.

  1. Maths IA Type 2 Modelling a Functional Building. The independent variable in ...

    1 53 161285.216 220314.784 0.732 : 1 54 164326.215 224473.785 0.732 : 1 Table 2 above shows that ratio of wasted space to the volume of the cuboid does not change as the height varies. This tells us that the efficiency of the space cannot be improved by varying the height.

  2. Mathematics Higher Level Internal Assessment Investigating the Sin Curve

    Not only this, by the period of the new graph would be and there would be a horizontal translation in the graph of units to the right hand side while there is no translation in the vertical translation of the graph.

  1. A logistic model

    of a hydrolectric project during the first 106 years by means of the logistic function model Un+1 {19} considering a harvest of 8000 fish per annum. 41000 40000 39000 38000 37000 36000 35000 34000 33000 32000 31000 30000 29000 28000 27000 26000 25000 0 20 40 60 80 100 Year Figure 9.1.

  2. Maths Modelling. Crows love nuts but their beaks are not strong enough to ...

    This gave me an idea about where to put my asymptotes and helped me find values for "c" and "d". Since, I know that my range has to be at least 1 I put in 1 for the horizontal shift.

  1. Virus Modelling

    Finally, I will identify reasons to why my models would have to be modified if the patient was a young child instead of an adult. 1. Model the initial phase of the illness for a person infected with 10 000 viral particles to determine how long it will take for

  2. Investigating ratio of areas and volumes

    Therefore area B can be expressed as the following: Area A: Area A is the area under the graph of y = x1/n in between the arbitrary points an and bn. Therefore area A can be expressed as the following: Ratio area A: area B Part ii: Introduction: In this

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work