• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Galileo's Rolling Ball experiment

Extracts from this document...

Introduction

Galileo’s Rolling Ball experiment

Aim:

Galileo in his rolling ball experiment investigated the acceleration of a ball rolling down an inclined plane, using a similar setup I will investigate how the time taken to roll down the inclined plane varies with the vertical height change.

Theory:

When two similar objects are thrown vertically downwards, they are in a state of free-fall. Both objects will hit the ground simultaneously; the force which causes these objects to fall down is the pull of gravity which is also the acceleration of these objects.

As the object falls down, its speed increases hence its acceleration increases.

Using the equation of motion;

S= u t + ½ a t2

Since u = o, we can ignore initial velocity so:

S = ½ a t2

Straight line equation: y = m x + c  

The variables in this experiment are: S and t2

When compared with the straight line equation:

S = ½ a  t2

y = m     x

  a sinimage09.png

...read more.

Middle

 t2                image12.png   g = 2

Prediction:

I think that as the ball will run down the slope its acceleration will increase and the time for the ball to roll down will decrease. Also if the vertical height (h) is increased, the time for the ball to roll down will decrease, i.e. it will travel faster due to increase in the force of gravity.

Diagram:image01.png

image13.pngimage08.pngimage06.pngimage06.pngimage07.pngimage04.pngimage05.pngimage02.pngimage03.png

Method:

  • First setup the apparatus as shown in the diagram above by:
  • Placing a 2m ramp on a horizontal surface.
  • Having the ramp at an angle so it makes a slope for the ball to run down from, the ramp will be supported on a clamp-stand.
  • Put a mark on the ramp for where the ball will be released and where it will stop.
  • Then measure the vertical height of the inclined slope and record it.
  • Place a cup at the end of the ramp where the mark is, so when the ball bearing reaches the end it will make a sound which will make it easy to stop the stopwatch.
  • Place a ball bearing at the highest point of the slope where the mark is.
  • Release the ball and simultaneously start the stopwatch.
  • When the ball bearing reaches to the bottom of the slope where the mark is, then stop the stopwatch upon hearing the sound made by the ball on contact with the cup.
  • Repeat the experiment several times and get an average for all repeats to get a more accurate result.

Safety:

  • When carrying out the experiment make sure the ramp is securely held on the clamp.
  • Handle the ramp carefully when carrying it around. Do not swing it around.
  • When changing the height, first remove the ramp then adjust the height before returning the ramp to its place.
...read more.

Conclusion

Max        % error  (with 3 readings)        = image15.png = 6.7%

Max        % error  (with 6 readings)        = image16.png = 3.3%

From the above calculation it can be clearly seen that increasing the number of readings significantly reduces the % error by 3.4% or by half.

Another way of increasing the accuracy of the timing would be to use a motion sensor to record the time.

The maximum percentage error in the height measurement is:

image17.png= 10%

This error could be reduced by measuring the height of the clamp accurately using a ruler with a mm scale.

The percentage error in the experiment was:

Error in height + (2x error in time) = 10 + 6.7 = 16.7%

From looking at the graph the points are scattered further away from the line of best fit as the height was increased. This is expected because the percentage error is greatest at these values.

        Page         

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Mechanics & Radioactivity section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Mechanics & Radioactivity essays

  1. Free essay

    The acceleration of a ball down various inclines

    3 star(s)

    His understanding of his force is phenomenal, considering he had no basis of evidence that this force existed, yet his idea developed incredibly. He even went on to create a Law of Universal Gravitation, which suggests that every particle of matter in the universe attracts every other particle of matter with a force proportional to the masses of both entities.

  2. Factors affecting the speed of a trolley Travelling down a ramp.

    were printed there by a vibrating metal bar running on an electric current, which hits a piece of carbon paper 50 times every second. The analysis of a ticker tape diagram will also reveal if the object is moving with a constant velocity or accelerating.

  1. Use of technology in a hospital radiology department. The department of imaging is one ...

    o And then using the 30 cm lead between the source and the counter record the result, this time the figure has to be more less. Using the same method but different absorber the same investigation done for alpha and beta to measure the thickens of the radiation.

  2. Multi-bladed Pumps. Does the number of propellor blades affect the efficiency of a ...

    It will not matter that the speed of rotation varies depending on how much the water resists the motion of the propeller. The only data that are needed to calculate the efficiency of the system are power input and useful power output.

  1. See how the angle of a ramp affects the speed of a cylinder moving ...

    The equation for x is: Sin (whatever the angle is, example 10�) x hypotenuse (0.3m) = Sin10� x 0.3 = 0.05cm (3 s.f.). > Using this information we can now work out the PE of the cylinder. E = m.g.h = 0.19818 x 9.8 x 0.05 = 0.10J Factors >

  2. Determine the viscosity of honey using a ball bearing.

    I will then measure speed when it is at a constant velocity in order to get very precise results. In order to ensure I get accurate results I will compare my results to the class and if they are not similar I will redo my whole experiment.

  1. To Investigate the Factors which Determine the stopping Distance of Rollers down a Ramp.

    weigh a roller 3. put the ramp at an angle, and keep it as a constant 4. place the roller on to the ramp, and let go of it at a known distance. 5. Record the distance from the bottom of the ramp to the half way point of the roller because the centre of gravity is in the middle.

  2. Motion of a sprinter during a 100m run

    After 7.4 seconds she gradually slows down. The curve is not as steep as the start of the run because her speed is only decreasing slowly. At the start of the run there is a bigger net force on the athlete because she is starting from a still position this enables her to accelerate.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work