• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11

Intensity on the power output of a solar cell.

Extracts from this document...

Introduction

Chris Critchley

Investigating the Effects of Distance and Light

Intensity on the Power Output of a Solar Cell.

Introduction:

As pollution becomes an increasingly important factor in energy production, the need arises to harness other ‘clean’ energy sources. Many of these energy sources, such as wind, tidal and solar, are used now but only in small amounts. In the near future it will become even more important that we use these as the non-renewable supplies, such as oil, finally run out.

This investigation focuses on solar energy and discusses its principles and how to use its potential. The actual experiments will look at how the power output of solar cells changes as the distance between the light source and the cell is altered, as well as looking for any specific relationship between the two.

Theory and Background Information:

image00.png

Year after year, pollution and energy consumption worldwide reaches higher levels. As a result the need for new energy sources is increased. One possible solution is solar energy. However, as the diagram to the right shows, this only represents a very small percentage of energy consumption. This is mainly due to its cost and the fact that solar panels themselves are not very efficient. There are several disadvantages to solar power, one being that the amount of sunlight reaching the panels in variable, depending on weather and placement. In order to power fairly large devices, such as hot water tanks in homes, a significantly large solar panel is needed, sometimes even spanning the entire roof of a building. These large solar panels can be very expensive due to the fact that they are made up of hundreds of smaller solar cells.

...read more.

Middle

50

55

60

65

Power (W)

0.000147

0.000146

0.000167

0.000161

0.000161

0.000171

Trial 2:                

Distance (cm)

Background

10

15

20

25

30

35

Power (W)

0.000133

0.000750

0.000354

0.000234

0.000219

0.000198

0.000167

Distance (cm)

40

45

50

55

60

65

Power (W)

0.000157

0.000128

0.000107

0.000125

0.000076

0.000118

Trial 3:                

Distance (cm)

Background

10

15

20

25

30

35

Power (W)

0.000164

0.000947

0.000515

0.000334

0.000277

0.000247

0.000221

Distance (cm)

40

45

50

55

60

65

Power (W)

0.000219

0.000186

0.000196

0.000183

0.000185

0.000175

Trial 4:                

Distance (cm)

Background

10

15

20

25

30

35

Power (W)

0.000116

0.000923

0.000468

0.000288

0.000176

0.000150

0.000135

Distance (cm)

40

45

50

55

60

65

Power (W)

0.000132

0.000136

0.000125

0.000115

0.000123

0.000115

Trial 5:                

Distance (cm)

Background

10

15

20

25

30

35

Power (W)

0.000125

0.000962

0.000423

0.000270

0.000186

0.000147

0.000127

Distance (cm)

40

45

50

55

60

65

Power (W)

0.000121

0.000127

0.000129

0.000126

0.000126

0.000121

...read more.

Conclusion

If more time had been available and if I hadn’t made such a radical change from the preliminary method, I would have investigated further into factors affecting the power output of a solar cell. These factors could have included wavelength of the light hitting the cell, temperature of the cell and the angle at which the light hits the cell. Another variable to investigate would have been the resistance across the cell and how it changed with the distance from the light source. This would be useful, as the variable used in this investigation, the voltage, did not change much at all. Using the resistance instead would give me an opportunity to look for other relationships.

To put the experiment into a social context, this and similar investigations would help in improving the efficiency of solar cells as they would give manufacturers a better idea of which factors that they can control and which factors most affect the final power output. It would also help in determining how best to place solar panels. The most valuable investigation for this purpose would be looking at the angle at which the light hits the cell. Overall this particular investigation has been successful in that it has fulfilled its goals and has shown that there is indeed a specific relationship between distance from the light source and the power output across the solar cell.

-  -

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Marked by a teacher

    Internal Resistance of a cell

    5 star(s)

    the value of I with the internal resistance r and later subtracted it with the value of V in order to obtain the emf (the potential difference of the cell), this formula helped to calculate or to proof the variable of the unknown above symbols especially the emf.

  2. Peer reviewed

    Solar cells

    3 star(s)

    The solar cells are created by pouring an ink solution incorporated with silicon nanoparticles and then decanting the excess liquid to leave behind a crystalline silicon structure4. Sources * ActewAGL Always - http://www.actewagl.com.au/education/_lib/images/energy/energy07.jpg. (Last Accessed: 08/04/10) This source of information is from the website of an Australian Energy Company.

  1. Free essay

    Finding the internal resistance of a solar cell

    of the 4 test has this gradient and therefore is the mean gradient of all the tests.

  2. Using an LDR to detect the intensity of plane polarised light allowed through a ...

    The final problem is sensitivity. With the resistor in the circuit, I am able to alter it in order to increase the sensitivity of the results that I get. With this circuit, however, that is not possible. Since I have decided on the existence of the resistor, the next step would be to work out the value.

  1. The aim of my investigation is to determine the specific heat capacity of aluminium.

    Results 2 had a larger value for the cooling correction than graph 3 because the maximum temperature reached was higher and therefore the temperature gradient between the block and the air was greater and therefore more heat is likely to be lost into the surroundings.

  2. The aim of the experiment is to verify the maximum power theorem and investigate ...

    As we need to increase the numbers of the blocks during the whole experiment, we should keep the way of increasing the numbers of blocks the same, for example, we may pile up the blocks throughout this experiment. In addition, beam balance is necessary in the experiment for measuring the masses, which have to be hung at the hanger.

  1. Is polymer electronics the future of TV screens

    chip into a flexible substrate, which could then be used as the screen on a device. OLEDs can also be used simply to emit light, as a light source. This would be done in a similar way to OLED screens, but just emitting white light.

  2. Energy Efficiency Experiments

    16 10 Current (A) 0.48 0.3 Voltage (V) 16.8 10.5 Mass of water(g) 500 312.5 Metabolic energy Many tasks that a cell must perform such as, movement and synthesis of macromolecules require energy. A large part of the cells activities are therefore devoted to obtaining energy from the environment and using that energy to drive energy- requiring reactions.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work