• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2

# Making Copper (II) Sulphate Stock Solution evaluation

Extracts from this document...

Introduction

Making Copper (II) Sulphate Stock Solution When creating my stock solution of Copper (II) Sulphate I accurately weighed out approximately 24.96g of Copper (II) Sulphate crystals on a 3 decimal place balance. I used the weighing by difference method to accurately obtain an exact weight for the crystals. This required me to weigh the mass of the weighing boat and the crystals, add the crystals to a beaker and then re-weigh the empty boat at the end. The masses I gathered from the weighing are as follows: Mass of boat and crystals first = 26.88g Mass of empty boat after = 1.926g Actual amount of crystals = Mass of boat and crystals first - Mass ...read more.

Middle

I have made up with distilled water in the 1dm3 flask by using the equation: Concentration = Number of Moles Volume c = n v c of CuSO4.5H2O = 0.099975961 mol 1 = 0.099975961 mol dm-3 = 0.100 mol dm-3 (3sf ) Due to the apparatus I used in the experiment there is a possibility that the concentration I have calculated is not exactly right; this is known as the precision error. To calculate the precision error I need to calculate the percentage uncertainty of each piece of apparatus that I used and then add them all together to give a total percentage uncertainty: % uncertainty of the 3dp balance = (5 x 10-4) ...read more.

Conclusion

mol dm-3 100 = � 8.397980724 x 10-5 Now that I have the percentage error I can show the possible errors that there could be in the calculation of the concentration of CuSO4.5H2O: Highest possible c of CuSO4.5H2O = 0.10005994mol dm-3 Lowest possible c of CuSO4.5H2O = 0.099891981 mol dm-3 However I will represent the final concentration I have calculated of the CuSO4.5H2O as: x 0.099975961 � 8.397980724 x 10-5 mol dm-3 0.100 � 8.40 mol dm -3 (3sf) The figures I used to calculate the errors from I obtained from the British Standard maximum permitted errors (tolerances) for volumetric glassware table from my chemistry laboratory. All of the glassware used is of grade B standard. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Inorganic Chemistry section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related AS and A Level Inorganic Chemistry essays

1. ## Determining the concentration of acid in a given solution

5 star(s)

I added the acid drop by drop and eventually reached a very pale peachy, pink colour from the yellow, so I knew the endpoint was reached. I kept this conical flask so that further titrations could be compared against this endpoint colour.

2. ## Deducing the quantity of acid in a solution

5 star(s)

This will ensure us that the endpoint is reached, so the results will be more reliable if the flask is well swirled. As approaching the endpoint, the colour of the solution in the flask will be definitely changing, so we open the stopcock partially and deliver H2SO4 dropwise until the endpoint is finally approached.

1. ## effects Concentration and Temperature on the Rate of Reaction

89.3 89.4 89.24 0.0112 0.003 112.9 113.5 112.7 113.2 113.3 113.12 0.0088 Graph 3 on the next page shows the concentration of potassium bromide plotted against reaction rate. The line of best fit is once again a straight diagonal one.

2. ## Bleaching experiment. Estimation of available chlorine in commercial bleaching solution.

the chlorine gas can be more easily to escape from the solution.. Third, the bleaching solution, will be decomposed by sunlight.[i.e. 2OCl- (aq)--> 2Cl-(aq) + O2(g)]By this way, the active ingredient, ClO- will so decompose into Cl2 by time resulting in the decrease in available chlorine as the chlorine gas can be more easily to escape from the solution..

1. ## Determination of the formula of hydrated Iron (II) Sulphate crystals (FeSO4xH2O)

This is a relatively small percentage but could be reduced further by increasing the amount of the substance used or by using a balance accurate to three decimal places. For example: Percentage error with more accurate balance = 0.005 x 100 = 0.34% 1.48g Percentage error with an increased mass

2. ## To study the action of a buffer solution

Rinse the electrode in distilled water & stand it in a flask of distilled water. Part D : Effect of air exposure on pH of pure water 1. Put 25 cm3 of pure water in the beaker and, keeping its exposure time to air as short as possible, measure & record its pH in Table 2.

1. ## analysis of two commercial brands of bleaching solution

Procedures For each brand of bleach, carry out the following: 1) Both volumes and the prices of the bleaches were recorded. 2) 10 cm3 of bleach was measured into a volumetric flask using a pipette. 3) Distilled water was added to the volumetric flask until reaching the graduation mark. 4)

2. ## Thermal Decomposition of Copper Crabonate

0.0033 �2 1/2 = 0.0013333 So one mole of copper carbonate = 0.001333333, but we need 2. 2 x 0.0013333333 =0.002666666667 moles of CuCO . This means that 0.0033 mole of gas will require 0.00267 mole of copper carbonate. From equation 2, we can see that 2 moles of gas requires 2 moles of copper carbonate.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to