• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Resistance Investigation

Extracts from this document...

Introduction

Introduction

In this investigation I will attempt to find the relationship between voltage and resistance in a bulb using the equation: Resistance= Voltage/Current.

Resistance: Resistance is the force that acts against charged electrons as they attempt to make their way around a circuit. More resistance means that more energy is needed to push the same number of electrons around the circuit. Many factors determine the resistance of an object for from its length or its temperature. Resistance is measured in ohms (Ω). The formula for resistance is: R=V/I

Voltage is the driving force of electrons; to measure voltage is to measure the potential difference of energy between the positive and negative terminals. Voltage is a measure of the amount of energy that you are providing per coulomb of charge therefore 1vote = 1 joule per coulomb*. Voltage is measured in Volts (V) The formula for voltage is: V= IR

Current: The current of a circuit is the rate at which the electrons flow through it. Current is measured in amps. The formula for finding current is I = Q/T where ‘Q’ is the charge passing at a certain point in the circuit measured in coulombs. Current is measured in amperes (A).

...read more.

Middle

  1. All school bags were packed away safely.
  2. While setting up the circuit the power pack was set to ‘0’ volts and unplugged.
  3. The circuit was not turned on until it was checked and approved by the teacher.
  4. The maximum operational voltage for the bulb was 6 volts; this voltage was not exceeded for safety reasons.

Apparatus: Variable Voltage Power Pack, ammeter, voltmeter, bulb, connecting leads (wires)

Method:(1)The following circuit was set up:

image00.png

(2)Using the voltmeter to measure, the voltage was increased by adjusting the variable power pack from 0 to 1 volt.

(3)The reading on the ammeter changed, its new reading, at one volt was recorded

(4)Steps 2 to 3 were repeated 5 times, each time increasing the voltage by 1, up to 6 volts. Then the entire experiment was repeated twice so as to obtain 3 sets of results. Then the mean average was calculated then using the formula: Resistance= Voltage/current. The resistance in Ω (ohms) was calculated and recorded.

Diagram

image01.png

Graph

image02.png

Interpretation

The voltage vs. Resistance decreasing curve graph shows a positive correlation between voltage and resistance, i.e.: as the voltage increases the resistance increases and vice versa.

Conclusion

...read more.

Conclusion

The only downside with these results was that I could only reliably calculate the resistance to the same level of accuracy as my least accurate measurement, in this case voltage, which could only be measured to one decimal place.

Therefore if I were to do this investigation again, I would change certain aspects of the method and apparatus in order to increase the accuracy and reliability.

Firstly, the reading from the voltmeter could only be taken to one decimal place, limiting the accuracy at which I could reliably state this resistance. To solve this problem I would use a voltmeter whose scale was as accurate to that of the ammeter, 3 decimal places. Preferably I would use digital volt and amp meters that would rule out any human error that might occur when using the naked eye to determining a reading.

Secondly, to increase the accuracy I would obtain more sets of results, perhaps repeat the investigation twice and find an even more accurate average current.

...read more.

This student written piece of work is one of many that can be found in our AS and A Level Electrical & Thermal Physics section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Electrical & Thermal Physics essays

  1. Investigating the effect of 'length' on the resistance of a wire

    So if we double the length of the wire then the resistance will also be doubled. We can prove this by looking at graph No2 where the resistance of the length of 20cm is double that of 10cm, meaning that R2 = 2R1.

  2. Investigation into the resistance of a filament lamp.

    Start with a low value for the voltage (0.5volts) and measure the corresponding value of the current. xvii. Read the values for current and voltage and record them on a table xviii. Repeat steps 1 to 17 two more times.

  1. Characteristics of Ohmic and non-Ohmic Conductors.

    Then I shall take down the readings of Current at different voltages at intervals of 0.2 V. I will take down at least 10 sets of values to investigate the varying current according to the voltage to find out the resistance in a Copper wire.

  2. The aim of my investigation is to determine the specific heat capacity of aluminium.

    the ammeter, voltmeter and thermometer. min c = 12100 max c = 12300 (m T)=10 10 min c = 1210Jkg-1 oC-1 max c = 1230Jkg-1 oC-1 Therefore the error caused by the time taken to record the results can result in an approximate difference of 20Jkg-1 oC-1.

  1. Light notes

    Light starting from a point outside the focus converges to a point after reflection. An object outside the focus has a real image because light passes through the place where the image is formed. 2. Real images formed by a single concave mirror are always inverted - back to front and upside down and formed infront of the mirror.

  2. Light and matter notes

    Diffraction of Light Diffraction is the change in the direction of light at passes by an edge or through a gap. Diffraction is strong when the wavelength of the light/wave is greater than or equal to the size of the obstacle or opening.

  1. A2 Viscosity investigation

    The metre rule can be used to measure with a sensitivity of +or- 0.5mm to use this accurately ensure that the metre rule is parallel to the object you need to measure. The weighing scales measures to an accuracy of 0.005Kg again ensure the scales are correctly set to 0 before you begin taking your readings.

  2. Coursework To Find The Internal Resistance Of A PowerSupply

    were not very reliable because the current increases and voltage decreases were fairly large that an accurate graph of current against voltage could not be plotted. Only four current and voltage reading were taken at each voltage setting on the power supply which meant that a small range of results could be plotted on a graph.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work