• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The functions of proteins in cell membranes. The fluid mosaic model is the clearest representation of a plasma membrane

Extracts from this document...

Introduction

The functions of proteins in cell membranes. The fluid mosaic model is the clearest representation of a plasma membrane. It shows a phospholipid bilayer (with a hydrophilic phosphate head, and hydrophobic fatty acid 'tails'), with glycoproteins, glycolipids and numerous proteins distributed throughout. These membrane molecules have been synthesised by endoplasmic reticulum and distributed by Golgi apparatus. The plasma membrane acts as a boundary between intercellular and extra cellular space. It is a regulatory system, controlling the movement of molecules in to, out of and within the cell. The plasma membrane is selectively permeable. Throughout this essay I will refer mainly to the plasma membrane, however many of the statements are also true for organelle membranes. An example of the fluid mosaic model is shown below. There are two main protein membrane shapes, and these effect there function. Channel proteins (non-polar ? helix segments, which cross the whole lipid bilayer from cytoplasm to extra cellular space) create a channel through which the targeted molecule can pass. Pores (non-polar ? ...read more.

Middle

There are three types of transport proteins uniporter (binds to one molecule of solute at a time and transports it along the solute gradient), symporter/coporter (binds to two molecules at a time and uses the gradient of one solutes concentration to force the other molecule against its gradient ) and antiporter (binding to one molecule of solute (S1) outside the membrane, and one molecule (S1) on the inside. By using S2's gradient, we are able to transport S1 against its gradient). The above protein assists the movement of molecules across the partially permeable membrane by the following processes; facilitated diffusion, active transport and exocytosis. Facilitated diffusion moves molecules down the concentration, but needs to be assisted by a carrier protein. Active transport also requires a carrier transport protein, however this process goes against the concentration gradient and therefore requires ATP (energy) This is achieved by either altering the inclination of the binding site or altering the rate at which the protein changes shape to induce movement. ...read more.

Conclusion

The immune system would not function without these glycoproteins as there would be little ability to identify foreign cells. They play a unique role in cellular communication and signal transduction. Cell adhesion proteins are used to form cell junctions. This allows for tissues to be formed. Cell recognition and adhesion is used for growth and development. Homotypic adhesion proteins allow growth and regrowth to occur by attaching themselves to identical homotypic proteins (ligands) to form tissues, but need glycoproteins to first recognise an identical cell. Heterotypic recognition proteins allow sexual reproduction to occur with gamete cells. Without cell adhesion white blood cells could not function as they would be unable to attach themselves to alien cells. Alzheimer's disease is caused by poor adhesion of sypnases (cell junctions in the nervous system), which results in poor signalling between cells. Sources Bellevue community life science faculty. 2004. http://scidiv.bcc.ctc.edu/rkr/biology201 /lectures/pdfs/membranes201.pdf. Wikipedia. 2004. http://en.wikipedia.org/wiki/Main_Page. Saunders, Dr. N. 2004. http://www.biology.creative-chemistry.org.uk/documents/N-bio-04.pdf. Simpkins, J. Williams, J.I. 1992. Advanced Biology - 3rd Ed. Scot Print Ltd. Fullick, A. 2000. Heinemann ADVANCED Science BIOLOGY - 2nd Ed. Heinemann. WORD COUNT: 1002 ?? ?? ?? ?? Page 2 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Molecules & Cells section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related AS and A Level Molecules & Cells essays

  1. Peer reviewed

    Transport across membranes How do substances cross into and out of cells.

    3 star(s)

    with more kinetic energy enabling them to move faster, and therefore diffusion occurs quicker. The thickness of the cells membrane will directly affect this rate also, the thinner the membrane the faster the rate of diffusion. The size and type of molecule or ion will affect the rate of diffusion

  2. The Plasma Membrane

    Baker in 2000 and also from a website http://www.Cell-biology.org.html In the plasma membrane there are two types of proteins which can be found, they are called extrinsic proteins and intrinsic proteins. The proteins act as cell receptors, as recognition sites and as adhesion sites.

  1. Transport across Plasma Membranes

    Facilitated diffusion Large and charged molecules are unable to pass freely though the phospholipid bilayer.

  2. Follicular development

    141:3461-3470 Grieshaber NA, Chemyong KO, Greishaber SS, Inhae JI, and Tae HJI. 2003. Follicle-Stimulating Hormone-Responsive Cytoskeletal Genes in Rat Granulosa Cells: Class I ?-Tubulin, Tropomyosin-4, and Kinesin Heavy Chain. Endocrinology. 144: 29-39 Hsueh AJW, McGee EA, Hayashi M, and Hsu SY.

  1. Applied Science

    In the acidosis, the brain detects the rising H in the blood and stimulates breathing, causing increased carbon dioxide loss and a fall in H . Conversely, in alkalosis the brain can reduce the respiration rate to increase carbon dioxide levels and increase H, restoring pH toward normal.

  2. Write about the Transport across Plasma membranes

    Dephosphorylation is triggered and the shape of the protein is restored. This general process can be shown in the sodium/potassium pump where the exact same process occurs, however this pump controls cell volume because potassium ions leave the cell and because the membrane is more permeable to potassium, the tendency of water to enter the cell by osmosis is reduced.

  1. Transport Across Plasma Membranes.

    and the smaller the particles, the more faster the net movement of the substance down the concentration gradient. The rate of diffusion also occurs faster when particles of a substance need to move very small microscopic distances than when they need to travel larger distances.

  2. Transport across Plasma Membranes

    > The size of the molecules or ions. Large molecules require more energy to get them moving than small ones do, so substances with large molecules tend to diffuse more slowly than ones with small molecules. Water molecules can diffuse rapidly across the phospholipid bilayer because they are small enough.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work