• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6

# Torsional Pendulum final experiment

Extracts from this document...

Introduction

A2 Physics Coursework

Final experiment

Changes to be made to final experiment and reasons

• To improve reliability of my results I will perform 3 runs for each measurement rather than 1, this will allow me to average the 3 results for each measurement which will improve reliability of results, and if there is one of the 3 that does not fit it can be excluded and average the other 2. I will no longer need to do 5 oscillations and then divide by 5 as the accuracy of the readings by the light gate ensures that the experimental error will already be eliminated as human error and reaction time no longer applies.
• I will scale up parts of the experiment which produced larger than expected error. Therefore I will use a larger diameter of wire, which will therefore reduce the percentage error as the accuracy of the micrometer will still be the same.
• The time period was where the majority of the errors occurred in the preliminary. Therefore I am going to use a light gate to measure the time period, this will reduce error on the time period significantly. It will eliminate the human error as the error due human reaction time will no longer apply. There will only be a reading error now, which is far less significant than the experimental error.
• I will use a range of lengths from 100-500mm rather than 100-800mm, as when the length becomes very long the bar on the bar on the wire tends to wobble a lot more than when a shorter length is used. Therefore I am hoping this will further reduce the error in the time period. I will go up by 50mm each time so that I get a suitable number of results.

Aim: Investigate the effect of changing the length of wire on the time period for a Torsional pendulum.

Equipment:

• Retort Stand with clamp to hold the wire and bar when oscillating and to hold the motion sensor.
• Bung cut into two halves so I can change length of the wire easily and hold the wire tightly.
• Metal Bar which will move through the motion sensor to give time periods.
• Approximately 0.700,m long wire( extra 200mm to allow for tying wire and excess at top of clamp to easily be able to change length)
• Laptop with Sensing science (graph) software which logs the data in real time.
• Light gate including easy sensor and cables, this will measure the time period.
• Micrometer to measure diameter of the wire.
• Meter long ruler to measure out correct lengths of wire and measure length of the bar.

Diagram:

Fair test:

It is important to make the experiment fair to ensure reliability of results. The following must be considered when carrying out my experiment.

• Ensure the same bar is used for each run so that these constants (mass and length) don’t change.
• Ensure the diameter of the wire is the same for the whole length, take readings at regular intervals on the wire to be sure.
• Turn 90 degrees anticlockwise for each time period measured, as the twist on the wire will be different otherwise. Also ensure that before turning 90 degrees that the wire and bar are in the equilibrium position, 0 angular displacement / no twist.

Middle

This shows that I should obtain exactly 0.5 as the gradient and the R squared correlation should be as close to 1 as possible to represent a strong correlation

Method:

• Set up the apparatus shown above, connect lead into laptop and open sensing science software, select com1. Set the time to 30 seconds and tick light gate sensor.
• Measure the length of the bar using a meter ruler and the mass using a scale.
• Get two 700mm copper wires and tie them together ensuring that the diameter is constant for the whole length. Then connect the wire to the metal bar, attach the wire to the bung and tighten. Measure the diameter of the wire at a few intervals and ensure that it is the same, record this diameter.
• Rotate the bar 90 degrees anticlockwise and let go, and at the same time press on run on the laptop. Allow the bar to complete 3 oscillations; this would be 2 peaks, 3 times, as shown below.
• Once 3 oscillations are complete then click the stop button. Click on interval and hold and drag from one peak to 2 peaks later, this will give you the time period for one oscillation. Record this in a suitable format and do the same for the next 2 oscillations.
• Repeat this process for lengths 100-500mm going up by 50mm each time, this will ensure I have enough results to be able to have a good graph.

Conclusion

"1" rowspan="1">

100

4.23

4.21

4.15

4.20

150

4.62

4.67

4.65

4.65

200

5.25

5.25

5.20

5.23

250

6.13

6.21

6.15

6.16

300

6.49

6.55

6.50

6.51

350

7.22

7.08

7.01

7.10

400

7.48

7.53

7.50

7.50

450

8.05

8.00

8.07

8.04

500

8.35

8.40

8.38

8.38

Conclusion:

From the graph you can see that the gradient which is b = 0.4532 And that logA=1.0557, therefore to get A I would unlog it, 101.0557= 11.368 (3.d.p), So if A= 11.368 and b=0.4532 then the relationship becomes T=11.368 x l0.4532

As you can see from the first graph without the logs, the relationship is that an increase in length causes an increase in time period.  This was the prediction I made and also that the time periods would be significantly less than the preliminary due to a greater diameter of wire.

I also added an R squared value to my log log graph; this gives me the strength of the correlation. With 1 being the highest, mine was 0.9868, which shows very strong correlation.

| Page

This student written piece of work is one of many that can be found in our AS and A Level Mechanics & Radioactivity section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

## Here's what a teacher thought of this essay

3 star(s)

This is a well planned and carried out investigation. Thought has gone into the justification of using certain equipment and the results have been well laid out and plotted. The analysis of uncertainty at the end is rather limited and could be extended. 3 stars.

Marked by teacher Pete Golton 06/06/2013

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related AS and A Level Mechanics & Radioactivity essays

1. ## Force of Friction experiment

Coefficients of friction for various materials 4. Add 1 block (totally 2 blocks) onto the original one. Repeat step 2. 5. Add 1 more block (totally 3 blocks). Repeat step 2. 6. Replace the wooden plate with the plastic plate and brick respectively.

2. ## Task- To make a model sycamore seed that can fly easily and stay in ...

Prediction In the investigation which I shall be doing I think that I will be expecting for the paper helicopter to fall to the ground in a much quicker timing when it has 5 paperclips attached to the tail of it, than it should do when it has either none,

1. ## Determine the viscosity of honey using a ball bearing.

I will need to do a preliminary test to find out when the ball bearings stop accelerating and hit a constant speed. I will measure the distance the ball bearing travels in a given time. To the following accuracy level of 1mm.

2. ## Centripetal motion. The objective of this experiment is to verify whether the tension ...

= 0.00005/0.0211 x 100% � 0.237% Percentage error in length of the nylon thread (l) = 0.0005/0.800 x 100% � 0.0625% Percentage error in time taken for complete revolutions / % 30t (� 0.05s) t (� 0.00167s) 1st set 2nd set 3rd set Mean 0.258 0.245 0.253 0.252 0.252 0.309

1. ## Flywheel experiment

a = linear acceleration of mass (m/s2) r = effective radius of the flywheel axle (m) To determine, experimentally, the moment of inertia (Iexp); T - Tf = (I + m r2) ? where T = m g r . . . . . . . .

2. ## Perform an experiment on friction and the variables of friction using a wooden block, ...

Each test will be done 5 times then averaged. To make sure it is a fair test I will: unless it breaks use the same Newton meter, I will use the same block and the same side of the block every time, I will use the same substance/type of substance

1. ## Investigating Force, Mass and Acceleration using a Trolley

The gradient of the line is increasing slightly as k increase. This could be explained if one of the factor g, M or R depends on the value of k. Assumed the variation of g is so small that can be neglected and M is constant and do not affect

2. ## Explain how excessive exposure to radiation can cause harm.

nausea 2. vomiting 3. headache 4. some loss of white blood cells Doses of 300 rems or more cause temporary hair loss, but also more significant internal harm, including damage to nerve cells and the cells that line the digestive tract.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to
improve your own work