• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5

# Using a pendulum to find gravityAim:To find the gravity by finding the period of the oscillations of a pendulum and plotting a graph.

Extracts from this document...

Introduction

Lab Report TITLE: Using a pendulum to find gravity Aim: To find the gravity by finding the period of the oscillations of a pendulum and plotting a graph. Hypothesis and Prediction: - the gravity from the graph is going to equal the gravity from the formula. Variables: The independent variable is the length of the string The Dependent variable is the period of one oscillation Controlled variables are: - mass of the pendulum Equipment: -Brass Ball -string -boss and clamp -stopwatch -2 metal blocks -Meter Ruler -Micrometer -The diameter of the brass ball was measured using a micrometer. Then the value was divided by 2 to give the radius -the length of the string was measured -two metal block were clamped with the string in between, the string was tied to the bob -the bob was pulled to the side and released -the time was started when the bob passed the reference line. ...read more.

Middle

20 39.82 1.991 20 39.94 1.997 2 0.91 20 37.25 1.8625 20 37.34 1.867 20 37.82 1.891 20 37.35 1.8675 3 0.81 20 35.25 1.7625 20 35.6 1.78 20 35.25 1.7625 20 36.13 1.8065 4 0.71 20 33.37 1.6685 20 33.07 1.6535 20 33.16 1.658 20 33.06 1.653 5 0.61 20 30.53 1.5265 20 30.31 1.5155 20 30.29 1.5145 20 30.75 1.5375 6 0.51 20 28.28 1.414 20 28.29 1.4145 20 27.91 1.3955 20 28.9 1.445 7 0.41 20 25.59 1.2795 20 25.21 1.2605 20 24.75 1.2375 20 24.94 1.247 8 0.31 20 21.94 1.097 20 21.79 1.0895 20 22.09 1.1045 20 21.75 1.0875 9 0.21 20 18.28 0.914 20 18.22 0.911 20 19.19 0.9595 20 18.34 0.917 10 0.11 20 13.44 0.672 20 13.34 0.667 20 13.35 0.6675 20 13.41 0.6705 The table contains the length of the string in meters, the number of oscillations, the time per 20 oscillations and the period of one oscillation. ...read more.

Conclusion

Y=3.9244x-0.0087 3.9244=gradient. 3.9244= (4(pi)^2)/g g = (4(pi)^2)/3.9244 g=10.060 from the graph. The average gravity from the formula= 100.614/10= 10.614 Conclusion: - the results where very close to the prediction but they weren't the same as the graph is a scatter diagram. -the result from the graph is more accurate as the graph cancels inaccurate measurements. Evaluation: -the method had weaknesses. -the angle of the pendulum to the reference line isn't the same in each reading which might cause a slight error. -the Air conditional may effect the pendulum; it may change its speed or change its direction. - it is difficult to stop the stopwatch and start it in the reference line exactly which might induce error - sometimes the ball tends to move in a circular motion and the experiment will have to be repeated. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our AS and A Level Mechanics & Radioactivity section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related AS and A Level Mechanics & Radioactivity essays

1. ## Torsional Pendulum final experiment

3 star(s)

* Bung cut into two halves so I can change length of the wire easily and hold the wire tightly. * Metal Bar which will move through the motion sensor to give time periods. * Approximately 0.700,m long wire( extra 200mm to allow for tying wire and excess at top of clamp to easily be able to change length)

2. ## Objectives: To determine the center of gravity of a body of irregular shapes

The experimental errors can be divided into two errors, systematic errors and random errors. The smoothness of the surfaces of the board, paper and the edges of the meter rule are belonged to the systematic errors. The motion of the boards, the size of the holes and the time that the board is at rest are the random errors.

1. ## Carry out an experiment of simple harmonic motion using a simple pendulum and determine ...

Pendulums don't lose energy it is simply converted from one form to another and then back again, so the motion is continuous until an external force acts on it. The energies used are gravitational potential energy that becomes kinetic energy and vice versa.

2. ## OCR B Advancing Physics Physics Practical Investigation Coursework Investigating Simple Harmonic Oscillations

Calculation of Spring Constant: Mass (kg) Weight (N) Extension (m) k 0.10 0.98 0.03 32.67 0.20 1.96 0.09 21.78 0.30 2.94 0.13 22.62 0.40 3.92 0.17 23.06 0.50 4.90 0.21 23.33 Mass (kg) Energy in Undamped System (J) Energy in Damped System (J)

2. ## Multi-bladed Pumps. Does the number of propellor blades affect the efficiency of a ...

Experiments will compare propellers with 2, 4 and 6 blades. The energy efficiency of the three propellers when displacing water will be determined and compared. Their efficiency may not be independent of the rate of rotation. This too will be investigated and analysed.

1. ## In this report I will start by exploring the history of the Computerised Tomography ...

Impactscan.org suggests that, the X-ray tube produces radiation which consists of long and short wavelengths. However, the filter removes long wavelength radiation as this does not play a role in CT image formation, but increases patient dose. We know that long wavelength radiation is less energetic, and as a result passes through the body and cannot be detected.

2. ## Evaluating a Torsional Pendulum experiment

* The micrometer is accurate to �0.005mm, therefore the error on my diameter of 0.49mm was (0.005/0.49)x100=1.02%, this shows a reduced error that of the preliminary, however a 1% error on the diameter can still be a major factor. This is due to the fact that the diameter is raised to the power of 4 in the equation.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to