Six sigma methology for solving automotive engineering problems.

Authors Avatar
SIX SIGMA METHODLOGY FOR SOLVING AUTOMOTIVE ENGINEERING PROBLEMS

ABSTRACT

All engineering problems are dependent on multiple design variables and the solutions for these needs to satisfy different responses. Compromises in deciding values for these design variables need to be made so that all the functional requirements are met with in the budgeted cost and time. To arrive at the values for these design variables, there is a need to understand the main and interaction effects of all these input parameters on the response variables and hence, necessitates conducting scores to hundreds of experiments. Performing these numbers of experiments may not be feasible every time given the budget and cost constraints. Methods like DoE based on statistical basis are found useful in such scenario where the effects of all the input parameters are modeled with a minimum number of experiments. Application of mathematical tools to engineering problems poses several challenges in arriving feasible solutions and DoE is no different. This article describes the challenges that are faced in applying DoE to automotive engineering problems. A six-sigma based methodology thus arrived based on how these challenges were overcome with two case studies is presented in this article.

Key Words: Design of Experiments, Response Variable, Automotive Seating System

. Introduction

The crucial factors that govern engineering and design of automotive systems are safety and cost. Several specifications, Legal and Customer specified, that guide the design of the systems from package and strength points of view need to be satisfied in designing these systems. Automotive Seating Systems also play a major role in providing safety to the passengers apart from satisfying other important requirements like comfort. Crashworthiness requirements can be met only through proper balancing and/or optimization of several design variables like material and sectional properties of different components. Thus, the influence of many variables and the need for satisfying many requirements makes the optimization process more difficult. Trial and error methods are very much in vogue in such design problems and these methods seldom hit targeted responses.

Of late, methods of designing the experiments based on statistical techniques are developed and found to be useful in undestanding the effects of different variables on the output. Design of Experiments is one such tool through which one can correlate between the design parameters and the responses with a minimum number of experiments done in a structured order. Tools like Regression and Optimization aid the engineer in arriving at the correlations and deciding the design parameters. These techniques can reduce thus the Product Design Cycle time and also enhance the Product quality due to the scientific basis of the tools.

Although, the mathematical tools help in designing, the challenge lies in their application to engineering problems. A systematic methodology to be formulated for every typical engineering problem in transforming this real life problem to a mathematical one without affecting the underlying physics and also in a form where the other tools can be applied. Such a methodology, which outlines the different phases, involved in transformation of automotive engineering problems to mathematical problems where six sigma tools like DoE, Regression and Optimization can be applied is described here.

2. Methodology
Join now!


A four-phased approach to solving the Automotive Engineering problems using different Six Sigma Tools has been proposed as in Fig. 1. The four phases are 1) Problem Definition 2) Problem Formulation 3) Six Sigma and 4) Engineering Judgement and Conclusion.

In the Problem Definition phase, the Engineering Problem to be solved should be defined elaborately with the outcome expected and the constraints. Also, to be identified at this stage are the variables that influence the outcome as understood at that stage and feasibility of their modification. The real task involved in the whole process is in ...

This is a preview of the whole essay