• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Corners - Maths Investigation

Extracts from this document...

Introduction

Corners Draw a grid 5 columns wide, with any number of rows above 2. Select a square of numbers, 2x2, e.g. 7,8,12,13 Multiply together the numbers in opposite corners of the square (e.g. 7*13=91, 8*12=96) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 I shall now begin searching for patterns, and for rules that I will then prove and use to explain patterns. My first step shall be to make examples to compare Ex.1 7 8 12 13 7*13=91 8*12=96 13 14 18 19 13*19=247 14*18=252 The pattern in this case would seem to be a difference of 5. It may be a coincidence that 5 is the number of columns in the grid, and in order to test whether it is in fact a coincidence or not I shall introduce a new letter 'c' which will stand for the number of columns within the entire grid. Algebra n n+1 n+c n+c+1 n(n+c+1)=n�+nc+n (n+1)(n+c)=n�+nc+n+c n�+nc+n+c-(n�+nc+n) = n�+nc+n +c -(n�-nc-n) = c The difference is c, the number of columns within the grid. RULE d = c I shall extend this by varying the size of the square extracted from the grid. ...read more.

Middle

= n�+3cn+3in+9ci� n�+3cn+3in+9ci�-(n�+3cn+3in) n�+3cn+3in +9ci� -(n�+3cn+3in) 9ci� 3x3 square: 4ci� 4x4 square: 9ci� 4 and 9 are both square numbers (similar to the pattern on page 2) 4 and 9 can be replaced with (s-1)�, making the rule: RULE d = (s-1)�ci� The logical way forward seems to be to change the square to a rectangle, for which I already have a theory. I believe that the (s-1)� in the rule, being (s-1) (s-1), is both of the sides of the square - each s represents the length of a side. Based upon this theory, using x and y to represent the horizontal and vertical dimensions of the square, the rule would be d = (x-1)(y-1)ci�. I shall now attempt to prove or disprove this, and if it turns out to be incorrect, I shall endeavour to discover the correct rule. I shall begin testing the theoretical rule by using it to find a solution, then finding the solution without a rule. If I am successful, both of the solutions should match. 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 I shall use a 3x4 rectangle (3 grid squares wide, 4 grid squares tall). ...read more.

Conclusion

is, but this does not give me any algebra to write down. In addition, I performed some preliminary experimentation with sequences of square and triangular numbers, but to no avail. Interesting patterns frequently appeared, however I was unable to explain any of them. I believe that, given sufficient time, a person could and probably has found rules for such sequences. This person, however, is not me. I have since reverted to working with algebra to find other formulae, and noticed that I have a rule for he contents of each corner of the square. Since only the corners are used, (this investigation could extended to use more than just the corners, but in this case has not been) I have therefore discovered each of the formulae for an addition interval (another term I made up, meaning that the sequence of numbers increases by the same number each time) that I believe would be most useful if I was ever to repeat or further extend this investigation. The formulae for the corners are: n n+(x-1)i n+(y-1)ci n+(y-1)ci+(x-1)i A very brief conclusion The overall rule for addition intervals (or whatever they're really called) is d = (x-1)(y-1)ci�. The rule for multiplication intervals (or whatever these are really called) is d = 0 More detailed conclusions are given to each section, and so this will end approximately... now. Appendix ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Marked by a teacher

    Opposite Corners. In this coursework, to find a formula from a set of numbers ...

    4 star(s)

    � 3240�10 = (n - 1) � 19 = n Solution Check: y (n-1) � = difference 10 (19 - 1)� = difference 10 � 18� = difference Therefore difference = 3240 Below is a 13 by 13 grid. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

  2. Marked by a teacher

    Opposite Corners

    4 star(s)

    I am now going to use a 4*4 square and do the same, as I did with the 2*2 and 3*3 square. 1 2 3 4 1 4 7 8 9 10 7 10 11 12 13 14 * 34 * 31 17 18 19 20 * 40 * 37

  1. Marked by a teacher

    Number Grid Aim: The aim of this investigation is to formulate an algebraic equation ...

    3 star(s)

    For the purpose of this exercise, we will call this n + 1. The bottom left hand corner is the top right hand corner plus the grid size, n+ g. The bottom right hand corner is the bottom left hand corner plus one; n+ g+1.

  2. Algebra Investigation - Grid Square and Cube Relationships

    = 40 When finding the general formula for any number (n), both answers begin with the equation n2+22n, which signifies that they can be manipulated easily. Because the second answer has +40 at the end, it demonstrates that no matter what number is chosen to begin with (n), a difference of 40 will always be present.

  1. Step-stair Investigation.

    I tried this formula with a size 10 grid. If you add up all the numbers in the red stair: 15+16+17+25+26+35=134. I saw if the formula came up with the same answer; 6X+4g+4= (6*15)+(4*10)+4= 134. This proves that 6X+4g+4 works for all 3-step stairs on all grids. S=6X+4g+4. After finding the two formulas listed above I decided to investigate

  2. Opposite Corners Investigation

    (X + 2) = X2 + X + 2X +2 = X2 + 3X +2 X (X + 3) = X2 + 3X 2 X X + 4 X + 20 X + 24 (X + 4) (X + 20)

  1. GCSE Maths coursework - Cross Numbers

    37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 If X=10 and g=4 X-g (X-1)

  2. Investigate The Answer When The Products Of Opposite Corners on Number Grids Are Subtracted.

    2 x 2 Grid 3 6 9 12 I have realised that when the increase in the numbers is 1 the answer is 1 times as much, (1�). When the increase in numbers is 2 the answer is 4 times as much, (2�)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work