• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Emma’s Dilemma

Extracts from this document...

Introduction

John Palfrey

May 1, 2007

John Palfrey, 5UL

Emma’s Dilemmaimage00.png

1)        Rearrangement Of EMMA

If we represent the letters in Emma’s name as numbers, we get an arrangement like this:

        E        M        M        A

        1        2        2        3

We can then use this system to find all of the other potential arrangements:

        1        2        2        3

        1        2        3        2

        1        3        2        2

        2        1        2        3

        2        1        3        2

        2        2        1        3

        2        2        3        1

        2        3        1        2

        2        3        2        1

        3        1        2        2

        3        2        1        2

        3        2        2        1

As you can see, there are 12 combinations.

2)        Rearrangement Of LUCY

If we represent the letters in Lucy’s name as numbers, we get an arrangement like this:

        L        U        C        Y

        1        2        3        4

We can then use this system to find all of the other potential arrangements:

        1        2        3        4        2        1        3        4

        1        2        4        3        2        1        4        3

        1        3        2        4        2        3        1        4

        1        3        4        2        2        3        4        1

        1        4        2        3        2        4        1        3

        1        4        3        2        2        4        3        1


        3        1        2        4        4        1        2        3

        3        1        4        2        4        1        3        2

        3        2        1        4        4        2        1        3

        3        2        4        1        4        2        3        1

        3        4        1        2        4        3        1        2

        3        4        2        1        4        3        2        1

As you can see, there are only 24 potential arrangements; twice as many as when there is one repetition.

3)        Other Rearrangements

If we use the name MAY to investigate the number of potential arrangements when there are only three factors, we get these arrangements:

        M        A        Y

        1        2        3

        1        2        3

        1        3        2

        2        1        3

        2        3        1

        3        1        2

        3        2        1

We only get six arrangements, a quarter of the amount when we use four factors.

...read more.

Middle

        1        2        1        3        2        3        1        1

        1        2        3        1        3        1        1        2

        1        3        1        2        3        1        2        1

        1        3        2        1        3        2        1        1

2 factors, 1 repetition        =        1 arrangements        =        (1 x 2) / 2        =        2!

                                                 2

3 factors, 1 repetition        =        3 arrangements        =        (1 x 2 x 3) / 2        =        3!

                                                 2

4 factors, 1 repetition        =        12 arrangements        =        (1 x 2 x 3 x 4) / 2        =        4!

                                                  2

If we investigate the arrangements when there are three repetitions, we get these results:

        1        1        1

        1        1        1        2

        1        1        2        1

        1        2        1        1

        2        1        1        1

        1        1        1        2        3        1        3        1        2        1

        1        1        1        3        2        1        3        2        1        1

        1        1        2        1        3        2        1        1        1        3

        1        1        2        3        1        2        1        1        3        1

        1        1        3        1        2        2        1        3        1        1

        1        1        3        2        1        2        3        1        1        1

        1        2        1        1        3        3        1        1        1        2

        1        2        1        3        1        3        1        1        2        1

        1        2        3        1        1        3        1        2        1        1

        1        3        1        1        2        3        2        1        1        1

3 factors, 2 repetitions        =        1 arrangements        =        (1 x 2) / 2        =        3!

                                                 6

4 factors, 2 repetitions        =        4 arrangements        =        (1 x 2 x 3) / 2        =        4!

                                                 6

5 factors, 2 repetitions        =        20 arrangements        =        (1 x 2 x 3 x 4) / 2        =        5!

                                                 6

There is a pattern in the denominatives, in that they are equal to the factorial of the number of repeated factors. In the sequence 1112, there are three repetitions, one number repeated twice. Therefore, the formula for this sequence would be:

        4th         =        x! / r!

                =        4! / 3!

                =        24 / 6

                =        4

and there are indeed 4 arrangements. In the sequence 11123, which also has three repetitions, the formula would be:

        5th         =        x! / r!

                =        5! / 3!

                =        120 / 6

                =        20

this is also the right amount. This also works for when there are two repetitions:

        4th

...read more.

Conclusion

        x        z        y        y        x        z        x        y        y        x

        y        x        x        y        z        z        y        x        x        y

        y        x        x        z        y        z        y        x        y        x

        y        x        y        x        z        z        y        y        x        x

then the formula, if rearranged, should be

        5th         =        x! / (r1! x r2!)

                =        (5! / (2! x 2!)

                =        120 / 4

                =        30

so this formula is right. If we take it one step further and account for each letter, we see that;

        5th         =        x! / (r1! x r2! x r3!)

                =        (5! / (2! x 2! x 1!)

                =        120 / 4

                =        30

it doesn’t make much difference, as multiplying by 1 never has any effect anyway. If we test this formula on the first and second sequences (4 letters, no repetitions and 4 letters, 1 repetition);

        4th         =        x! / (r1! x r2! x r3! x r4!)

                =        4! / (1! x 1! x 1! x 1!)

                =        24

        4th         =        x! / (r1! x r2! x r3! x r4!)

                =        4! / (2! x 1! x 1! x 1!)

                =        24 / 2

                =        12

The formula even works for these two, so it is safe to assume that it works for all of the combinations of every set of letters with any number of repetitions.

        nth         =        n! / (r1! x r2! x r3! x r4!...)        ;        r1 + r2 + r3 + r4...        =        n

...read more.

This student written piece of work is one of many that can be found in our GCSE Emma's Dilemma section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Emma's Dilemma essays

  1. Emma's Dilemma

    can be applied to the other two sets of results, still giving the correct answers. The rule for "Two letters repeated twice" was: No. of = No. of letters X ( No. of letters - 1 ) X ( No.

  2. Emma's Dilemma Question One: Investigate the number of different arrangements of the letters

    XYXXYXY YYXXXYX XYXXYYX YYXXYXX XYXYXXY YYXYXXX XYXYXYX YYYXXXX XYXYYXX XYYXXXY XYYXXYX XYYXYXX XYYYXXX This proves that my rule is correct. Justification The reason why this rule occurs, is because there may-be the same number of letters, but any number can be used more than once.

  1. Emma's Dilemma

    UAARL RAAUL LRAUA AURAL AAURL URLAA RULAA LRAAU AUALR AARLU URALA RUALA LRUAA AUARL AARUL URAAL RUAAL There are 5 letters, 2 repeated, 60 different arrangements. TABLE OF RESULTS Number of different arrangements (a) Number of letters (n) No letters repeated One letter repeated 2?

  2. Emma’s Dilemma.

    Four Letters: 'LUCY' I have already found the number of possible permutations for a name with four letters (Lucy) in part two. There are a total of 24 permutations, which shows the pattern widening out even more. Five Letters: 'KACIE' K = 1 A =2 C = 3 I =

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work