• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Emma’s Dilemma

Extracts from this document...

Introduction

Thomas Collyer 10Lr                MATHS

27/04/07                EMMA’S DILEMMA

Page  of

EMMA’S DILEMMA

Aim

To investigate the patterns caused by the permutations of letters in words of different lengths and to investigate the possibility of predicting the number of permutations. To discover a formula that can be applied to all words.

Question 1.

12 different permutations can be made by the name EMMA:

  1. EMMA
  2. EMAM
  3. EAMM
  4. MMEA
  5. MMAE
  6. MEMA
  7. MEAM
  8. MAEM
  9. MAME
  10. AMEM
  11. AMME
  12. AEMM

Question 2.

...read more.

Middle

ILVECILCEVILCVEIECLVIECVLIELCVIELVCIEVLCIEVCLVECLIVECILVEICLVEILCVELICVELCIVCLIEVCLEIVCIELVCILEVCELIVCEILVICLEVICELVILECVILCEVIECLVIELCVLECIVLEICVLCIEVLCEIVLIECVLICIECILVECIVLECVIEECVEIECLIVECLVIELVICELVCI
  1. ELICV
  2. ELIVC
  3. ELCVI
  4. ELCIV
  5. EICVL
  6. EICLV
  7. EILVC
  8. EILCV
  9. EIVCL
  10. EIVLC
  11. EVCIL
  12. EVCIL
  13. EVLIC
  14. EVLCI
  15. EVILC

       120.EVICL

4) Looking at mathematics behind answers

The word Lucy has 4 letters l,u,c and y. If we know how many letters (no repeats) are in a word we can work out the number or permutations by multiplying 1 x 2 x 3 x 4 and so on until we reach the correct number of digits in a word (e.g. a 10 letter word would be 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10). The mathematical symbol for this is n! and stands for number factorial, this shows number of letters! . After working this out we can quickly and easily work out the number of permutations made by a word with repeats – this id done by dividing our previous answer by 2. For 2 repeats we divide the answer again by 2.

...read more.

Conclusion

! q! ...  

(In words: n factorial over p factorial times q factorial and so on)

Example1

How many permutations can be formed from the letters, taken 5 at a time, of the word DADDY?

Solution  (has 3 letters that are the same – D)

5! / 3! = 20

  • The 5! Shows the word has five letters in it including repeats.
  • The 3! Shows the word has 3 letters that are the same (d)

Example2

Find the number of arrangements of all the letters in the word MARMALADE.

Solution

9! / 2! x 3! = 30240

  • The 9! Shows the word has 9 letters altogether including repeats.
  • The 2! Shows the word had 2 letters the same (m).
  • The 3! Shows the word has 3 more letters that are the same (a).

This formula can be used conclusively for other problems.

In how many ways can 3 apples, 2 oranges, 4 pears and one banana be given to 10 children if each child receives a piece of fruit?

Solution

10! / 3! x 2! x 4! = 12600

...read more.

This student written piece of work is one of many that can be found in our GCSE Emma's Dilemma section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Emma's Dilemma essays

  1. Emma's Dilemma

    name Emma, but as we are treating them as two separate letters, we can see that there are many duplicates in this table. Currently there are 24 combinations, the same as Lucy, but now we will eliminate the duplicates, leaving us with all the real combinations of Emma: E M

  2. Emma's Dilemma

    To find out the number of arrangements for a word with a double letter you have to half the number of arrangements a word has with single letters and the same number of letters (n=s/2(n being the double letter, s being the single letter)).

  1. Emma's Dilemma

    1. ABCC 2. ACBC 3. ACCB 4. CABC 5. CACB 6. CCBA 7. CCAB 8. CBCA 9. CBAC 10. BACC 11. BCAC 12. BCCA Now this is a 4-letter word and there are 12 different combinations for it. Now I have figured out a formulae to find out how many different combinations there are without writing out a list of combination and it is n!

  2. GCSE Mathematics: Emma's Dilemma

    6 It works 4 letters: It has 24 arrangements formula: 1 x 2 x 3 x 4 = 24 It works My Formula is now confirmed to be correct = n! For a four letter word with duplicated letters, we have to construct a formula.

  1. Emma's Dilemma

    Now that I have worked out the how many possibilities there are for a 2 lettered word, a 3 lettered word, and a 4 lettered word, I think I may be able to figure a pattern out. Therefore I will list all my discoveries in a table on the following page.

  2. EMMA'S DILEMMA

    If it is the same then the formula works. I will call this table 2. Let's work out the formula: 1 letter: 1 2 letters: 1*2 3 letters: 1*2*3 4 letters: 1*2*3*4 And so on. So the formula is N!

  1. Emma's Dilemma

    PUELAI PUEALI PUEAIL PUEIAL PUEILA PLUAEI PLUAIE PLUEAI PLUEIA PLUIEA PLUIAE PLAUEI PLAUIE PLAIUE PLAIEU PLAEIU PLAEUI PLIAUE PLIAEU PLIEAU PLIEUA PLIUEA PLIUAE PLEIAU PLEIUA PLEAIU PLEAUI PLEUIA PLEUAI PILEAU PILEUA PILUEA PILUAE PILAEU PILAUE PIAULE PIAUEL PIAEUL PIAELU PIALEU PIALUE PIUALE PIUAEL PIULEA PIULAE PIUEAL PIUELA PIEUAL PIEULA PIEAUL

  2. Emma's Dilemma

    Why this works: When you have a 1-letter word there is only 1 arrangement. e.g. A When you rearrange a 2-letter word there are 2 arrangements. e.g. JO OJ When you rearrange a 3-letter word you can fix the first letter and then rearrange the other 2.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work