• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  • Level: GCSE
  • Subject: Maths
  • Word count: 1848

Emma's Dilemma.

Extracts from this document...

Introduction

Emma’s Dilemma Coursework

Aim:        To investigate the number of different arrangements of the letters in the name Emma and several other names I have chosen and find a formula for the names with different amounts of letters. I will also investigate the number of different arrangements of the letters X and Y and find a formula for the words with different amounts of X’s and Y’s.

Prediction:        I think that the more letters in the name the more arrangements of that name there will be. I also think that there will be more arrangements of Lucy than of Emma because all the letters in Lucy are different whilst two letters in the name Emma are the same.

Method:   To work out the number of different arrangement of names I will write down the first letter of the name, then systematically work out all the arrangement of the name that begin with that letter by using the branching method. The branching method looks like this

                Y        C                        LUYC

        U        C        Y                        LUCY        

L                 U        Y                        LCUY

C        Y        ULUYC

                U        C                        LYUC

Y        C        U                        LYCU

As you can see there is six different arrangement of the name Lucy that begin with L.

...read more.

Middle

MDYAN
Y        N        A        MDYNA

                A        Y        MDNAY

D        N        Y        A        MDNYA

        N        Y        MDANY

A        Y        N        MDAYN

                                A        N        MYDAN
D        N        A        MYDNA

                                D        A        MYNDA

                Y        N        A        D        MYNAD

                                D        N        MYADN

                        A        N        D        MYAND

                                D        Y        ANMDY

                        M        Y        D        ANMYD

N                M        Y        ANDMY

D        Y        M        ANDYM

                                D        M        ANYDM

Y        M        D        ANYMD

        N        M        ADYNM

Y        M        N        ADYMN

                        M        Y        ADNMY

N        Y        M        ADNYM

                        N        Y        ADMNY

D        M        Y        N        ADMYN

A                                M        N        AYDMN
D        N        M        AYDNM

                A        M        AYNAM

Y        N        M        A        AYNMA

        N        D        AYMND

M        D        N        AYMDN

                                Y        N        AMDYN
D        N        Y        AMDNY

                                D        Y        AMNDY

                M        N        Y        D        AMNYD

                                D        N        AMYDN

                        Y        N        D        AMYND

                                D        Y        NAMDY

                        M        Y        D        NAMYD

A                M        Y        NADMY

D        Y        M        NADYM

                                D        M        NAYDM

Y        M        D        NAYMD

        A        M        NDYAM

Y        M        A        NDYMA

                        M        Y        NDAMY

A        Y        M        NDAYM

                        A        Y        NDMAY

D        M        Y        A        NDMYA

N                                M        A        NYDMA
D        A        M        NYDAM

                D        M        NYADM

Y        A        M        D        NYAMD

        A        D        NYMAD

M        D        A        NYMDA

                                Y        A        NMDYA
D        A        Y        NMDAY

                                D        Y        NMADY

                M        A        Y        D        NMAYD

                                D        A        NMYDA

                        Y        A        D        NMYAD

                                N        Y        DAMNY

                        M        Y        N        DAMYN

A                M        Y        DANMY

N        Y        M        DANYM

                                N        M        DAYNM

...read more.

Conclusion

So: 1x2x3x4 / 1x2 x 1x2 = 24 / 4 = 6

Five letter words like vwxyz; this has 1 of each letter (no letters the same)
So: 1x2x3x4 / 1x1x1x1x1x1 = 24 / 1 = 24

A= ni/6

Formula

The formula is easier to show using numbers

Formula for all different number:

a=ni

formula when 2 number are the same

a=ni/2

formula when 3 numbers are the same

a=ni/6

Let’s put them is this way:

n

1

2

3

x

1

2

6

n represent the number of figures of a number

x represents the divided number in the formula

X is equal the last x*n, so I predict that the formula for 4 same number of a number is:

A= ni/24

4 fig, one arrangement.

a=n/24=(1*2*3*4)/24=1so the formula works

(4)

if a figure has two pairs of three same numbers the formula is (1*2*3*4*5*6*7*8)/1*2*3*4*1*2*3*4=70

Use this formula, we can find out the total arrangements of all numbers and letters.

3 letters the same = n!( 3x2x1 = 6)

4 letters the same = n! (4x3x2x1 = 24)

5 letters the same = n!(5x4x3x2x1 = 120)

6 letters the same = n!(6x5x4x3x2x1 = 720)

From this I have worked out the formula to find out the number of different arrangements:

n! = the number of letters in the word

p! = the number of letters the same

a=n!/p!(formula)

In conclusion: I have learnt how to systematically rearrange different numbers and letters in a sequence.

I have also developed my factorial skills.

Natalie Young 10CP

...read more.

This student written piece of work is one of many that can be found in our GCSE Emma's Dilemma section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Emma's Dilemma essays

  1. Arrangements for names.

    So : 1x2x3x4 / 1x2 x 1x2 = 24 / 4 = 6 !!! A five letter word like aaaab; this has 4 a's and 1 b (4 x's and 1 y) So: 1x2x3x4x5 / 1x2x3x4 x 1 = 120 / 24 = 5 !!!

  2. Emma's Dilemma

    and so on, until the number being times by is the number 1 itself. Then divide the number by the number of times the letter has been repeated, timed by the number of letters minus 2, and so on, until the number being times by is the number 1 itself.

  1. I have been given a problem entitled 'Emma's Dilemma' and I was given the ...

    if there were words that had different letters repeated a number of times. For example, the formula I had worked out would not work for a word such as AABBBCC. So I wanted to find out a formula that could work out the number of arrangements for a word with

  2. Emma's Dilemma

    This number that you divide by depends on how many times the one letter is repeated; you divide by the number of times the one letter is repeated factorial. Why? If we look at AAAR for example, one letter (A)

  1. EMMA's Dilemma Emma and Lucy

    let's try 6 fig, with 2 pairs of 3 same numbers 111222 121212 222111 211212 112122 121122 221211 211221 112212 122112 --10 arrangements 221121 212112 ---10 arrangements 112221 122121 221112 212121 121221 122211 211122 212211 total arrangement is 20 let's see the formular: a=(1*2*3*4*5*6)/1*2*3 =120 no, it doesn't work but if we divide it by another 6 which is (1*2*3)

  2. Emma's Dilemma Question One: Investigate the number of different arrangements of the letters

    of = No. of letters X ( No. of letters - 1 ) X ( No. of letters - 2 ) X etc... Combinations Times repeated X ( Times repeated - 1 ) X etc... For example: To find the number of combinations which can be made from using

  1. Emma’s Dilemma.

    Both names contain four letters, however, the only difference is that Emma's name has got the letter 'M' twice and Lucy's name has all four letters different. So if the name contains a repeating letter then it will have fewer combinations than a name with all different letters, but with the same number of letters.

  2. Emma’s Dilemma

    The increase between two numbers is shown next to the higher number. We can see the general trend that as the number of letters goes up so does the number of arrangements and so does the increase between the number of arrangements.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work