• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  • Level: GCSE
  • Subject: Maths
  • Word count: 1848

Emma's Dilemma.

Extracts from this document...

Introduction

Emma’s Dilemma Coursework

Aim:        To investigate the number of different arrangements of the letters in the name Emma and several other names I have chosen and find a formula for the names with different amounts of letters. I will also investigate the number of different arrangements of the letters X and Y and find a formula for the words with different amounts of X’s and Y’s.

Prediction:        I think that the more letters in the name the more arrangements of that name there will be. I also think that there will be more arrangements of Lucy than of Emma because all the letters in Lucy are different whilst two letters in the name Emma are the same.

Method:   To work out the number of different arrangement of names I will write down the first letter of the name, then systematically work out all the arrangement of the name that begin with that letter by using the branching method. The branching method looks like this

                Y        C                        LUYC

        U        C        Y                        LUCY        

L                 U        Y                        LCUY

C        Y        ULUYC

                U        C                        LYUC

Y        C        U                        LYCU

As you can see there is six different arrangement of the name Lucy that begin with L.

...read more.

Middle

MDYAN
Y        N        A        MDYNA

                A        Y        MDNAY

D        N        Y        A        MDNYA

        N        Y        MDANY

A        Y        N        MDAYN

                                A        N        MYDAN
D        N        A        MYDNA

                                D        A        MYNDA

                Y        N        A        D        MYNAD

                                D        N        MYADN

                        A        N        D        MYAND

                                D        Y        ANMDY

                        M        Y        D        ANMYD

N                M        Y        ANDMY

D        Y        M        ANDYM

                                D        M        ANYDM

Y        M        D        ANYMD

        N        M        ADYNM

Y        M        N        ADYMN

                        M        Y        ADNMY

N        Y        M        ADNYM

                        N        Y        ADMNY

D        M        Y        N        ADMYN

A                                M        N        AYDMN
D        N        M        AYDNM

                A        M        AYNAM

Y        N        M        A        AYNMA

        N        D        AYMND

M        D        N        AYMDN

                                Y        N        AMDYN
D        N        Y        AMDNY

                                D        Y        AMNDY

                M        N        Y        D        AMNYD

                                D        N        AMYDN

                        Y        N        D        AMYND

                                D        Y        NAMDY

                        M        Y        D        NAMYD

A                M        Y        NADMY

D        Y        M        NADYM

                                D        M        NAYDM

Y        M        D        NAYMD

        A        M        NDYAM

Y        M        A        NDYMA

                        M        Y        NDAMY

A        Y        M        NDAYM

                        A        Y        NDMAY

D        M        Y        A        NDMYA

N                                M        A        NYDMA
D        A        M        NYDAM

                D        M        NYADM

Y        A        M        D        NYAMD

        A        D        NYMAD

M        D        A        NYMDA

                                Y        A        NMDYA
D        A        Y        NMDAY

                                D        Y        NMADY

                M        A        Y        D        NMAYD

                                D        A        NMYDA

                        Y        A        D        NMYAD

                                N        Y        DAMNY

                        M        Y        N        DAMYN

A                M        Y        DANMY

N        Y        M        DANYM

                                N        M        DAYNM

...read more.

Conclusion

So: 1x2x3x4 / 1x2 x 1x2 = 24 / 4 = 6

Five letter words like vwxyz; this has 1 of each letter (no letters the same)
So: 1x2x3x4 / 1x1x1x1x1x1 = 24 / 1 = 24

A= ni/6

Formula

The formula is easier to show using numbers

Formula for all different number:

a=ni

formula when 2 number are the same

a=ni/2

formula when 3 numbers are the same

a=ni/6

Let’s put them is this way:

n

1

2

3

x

1

2

6

n represent the number of figures of a number

x represents the divided number in the formula

X is equal the last x*n, so I predict that the formula for 4 same number of a number is:

A= ni/24

4 fig, one arrangement.

a=n/24=(1*2*3*4)/24=1so the formula works

(4)

if a figure has two pairs of three same numbers the formula is (1*2*3*4*5*6*7*8)/1*2*3*4*1*2*3*4=70

Use this formula, we can find out the total arrangements of all numbers and letters.

3 letters the same = n!( 3x2x1 = 6)

4 letters the same = n! (4x3x2x1 = 24)

5 letters the same = n!(5x4x3x2x1 = 120)

6 letters the same = n!(6x5x4x3x2x1 = 720)

From this I have worked out the formula to find out the number of different arrangements:

n! = the number of letters in the word

p! = the number of letters the same

a=n!/p!(formula)

In conclusion: I have learnt how to systematically rearrange different numbers and letters in a sequence.

I have also developed my factorial skills.

Natalie Young 10CP

...read more.

This student written piece of work is one of many that can be found in our GCSE Emma's Dilemma section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Emma's Dilemma essays

  1. Arrangements for names.

    So : 1x2x3x4 / 1x2 x 1x2 = 24 / 4 = 6 !!! A five letter word like aaaab; this has 4 a's and 1 b (4 x's and 1 y) So: 1x2x3x4x5 / 1x2x3x4 x 1 = 120 / 24 = 5 !!!

  2. Emma's Dilemma

    and so on, until the number being times by is the number 1 itself. Then divide the number by the number of times the letter has been repeated, timed by the number of letters minus 2, and so on, until the number being times by is the number 1 itself.

  1. EMMA's Dilemma Emma and Lucy

    The formula is a=ni/xixi but we need to change the formula, because there are 2 pairs of same numbers with different number of figures. so we change the formula to a=ni/x1i*x2i Let's try 5 figures with 3 same number, and 2 same number.

  2. I have been given a problem entitled 'Emma's Dilemma' and I was given the ...

    if there were words that had different letters repeated a number of times. For example, the formula I had worked out would not work for a word such as AABBBCC. So I wanted to find out a formula that could work out the number of arrangements for a word with

  1. Emma's Dilemma

    noticed that the number of different arrangements for a word that has one letter repeated 4 times is one twenty-fourth of the number of different arrangements for a word which has the same amount of letters, but none repeated. For example: To find the number of different arrangements for SSSSEF

  2. Emma's Dilemma Question One: Investigate the number of different arrangements of the letters

    ADBCA BDAAC CDAAB DCAAB ABDAC ADCAB BDACA CDABA DCABA ABDCA ADCBA BDCAA CDBAA DCBAA Results: Number of Letters: Number of different combinations: 2 1 3 3 4 12 5 60 Rule: To find the number of all the different combinations possible, from a selected number of letters ( using every letter only once, )

  1. Emma’s Dilemma.

    4 2 5 K C I A E 10 1 3 4 5 2 K C I E A 11 1 3 5 2 4 K C E A I 12 1 3 5 4 2 K C E I A 13 1 4 2 3 5 K I A

  2. To investigate the various arrangements that could be made with different names or words. ...

    not going to use this way, as it needs too much information to be completed and an algebraic rule for this is quite hard to figure out. I have realised a second way of finding out the answer, which is more practical than the previous.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work