• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11

fencing problem

Extracts from this document...

Introduction

I have been given the fencing problem course work by my teacher. In this piece of course work I will be using ict (excel to help me draw graphs and word) and be drawing graphs to explain my statistics. This piece of course is about:

A farmer as exactly 1000 meter of fencing and wants to fence off a plot of level land. She is not concerned about the shape of the plot, but it must have a perimeter of 100m so it could be anything else with a perimeter (or circumference) of 1000m. She wishes to fence off the plot of land, which contains the maximum area.

The propose of this course is to work out all the maximum area for 1000 meter fence by drawing and calculating with 2D different shapes.

...read more.

Middle

33600

90

410

36900

100

400

40000

110

390

42900

120

380

45600

130

370

48100

140

360

50400

150

350

52500

160

340

54400

170

330

56100

180

320

57600

190

310

58900

200

300

60000

210

290

60900

220

280

61600

230

270

62100

240

260

62400

250

250

62500

image39.png

Now I will be drawing and calculating rectangles to find the maximum area of 1000meter

Shape 1                                                                              shape 2

       250m                                                                              240m       image12.png

image13.png

                         250m                                                                           2          260m

Area= length × width                                               Area= length × width

Area = 250×250                                                       Area = 240×260

= 62500m²                                                                 = 62400m²

Shape 3                                                                 shape 4                                                

     210m                                                                                  160mimage13.pngimage13.png

                               290m

                                                                                              340m

Area= length × width                                               Area= length × width

Area = 210×290                                         Area = 210×290

= 60900m²                                                                   = 54400m²

I have chosen 3 areas from the table above the rectangles .This table and the graph below  show the 3 rectangles and 1 square which I have draw area width of the rectangles. And I can see that the maximum area is a square.

shape

length

 width

area

1

160

340

54400

2

210

290

60900

3

240

260

62400

4

250

250

62500

This Graph will show the data above of area and width of the rectangles

image40.png

...read more.

Conclusion

aths/shape_space_and_measures/fencing_problem/819222/html/images/image15.png" style="width:24px;height:1.33px;margin-left:0px;margin-top:0px;" alt="image15.png" />

                                            2

                                       tan30= 83.3

                                                    H                                

image24.pngimage25.png

                                       H=83.3 = 144.27

                                            0.57735

        Area=166.6×144.27 = 12017.69

                    2

        12017.69×6= 72106.14

        = 72106.14

Heptagon

Each side equal to 142.9m

image41.png

Perimeter 1000 =142.9m

                    7

  360 = 51.42image28.pngimage16.pngimage27.pngimage26.png

    7

51.42 = 25.71

    2

Tan 25.71 = 100

                       Himage15.png

 h= 100 = 148.46

                                            0.48126         

                               Area= 142.9×148.46= 10607.46

                                                   2

                                      = 10607.46×7= 74252.22m²

Octagon

Each side equal to 125m

image31.pngimage32.pngimage29.pngimage30.png

                               Perimeter 1000 = 125m

                                                   8image16.png

image33.png

360 = 45

                                    8

45 = 22.5    

                                    2  

                                 Tan 25.7= 62.5        

                                          H

                               H= 32.5 = 150.8

                                     0.41421

                                Area= 125×150.8= 9625        

                                                2        

                                 =9625×8=75400m²

Nonagon

Each side equal to 111.1m

Perimeter 1000 = 111.1mimage42.png

                    9

360 = 40

         9

 40 = 20

           2

     Tan 20= 55.5

                     H                          

                                    H = 55.5 = 152.14

                                0.3639

                        Area= 111.1×152.14= 8451.37

                                                      2            

                                         8451.37×9= 76062.33m²

Decagon

Each side equal to 100m

   Perimeter =1000 = 100mimage16.pngimage43.png

                        10

360= 36                

                     10                            

36=18

                   2

                                              Tan 18= 50

                                                              H

                                            H= 50 = 1592.35

                            0.0314

           Area= 100×1592.35 = 79617.5

                 2

           = 79617.5×10= 796175m²

shapes

perimeter

 area (m² )

Pentagon

200

6881.5

Hexagon

166.6

72106.14

Heptagon

142.9

74252.22

Octagon

125

75400

Nonagon

111.1

76062.33

Decagon

100

796175

image44.png

image34.png

        C= 1000

                                           C=π*D

image35.png

                                          1000 m=3.14D

                                          D=1000= 318.31

π

        Radius= 318= 159

                                                          2

                                           Area=π×R²

                                           = 3.14×159×159

                                           = 79382

In conclusion in this piece of course I have achieved in my investigating on different shapes of perimeter of 1000m to which shape gives the maximum area, I found that the circle with a circumference of 1000m gives me the maximum area than other shapes.

krishan 10H

...read more.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. Fencing problem.

    AC2 = AB2 + BC2 (416.67) 2 = (333.33) 2 + (250) 2 173608.9 = 111108.9 + 62500 173608.9 = 173608.9 Now it is certain that the triangle is a right hand triangle the area can be found. Area of triangle = 1/2 � Base � Height Area of triangle

  2. The Fencing Problem

    340 330 282.84 1000 48083.26 342 329 281.07 1000 48062.87 344 328 279.28 1000 48036.99 346 327 277.49 1000 48005.55 The highest value has changed yet again; and, to make no room for error next, I will create another table of data with the base values being increased by 0.5.

  1. Fencing Problem

    310 1000 500 46540.31 390 305 305 1000 500 45731.55 After evaluating my second set of values, I noticed that the closer the dimensions got to an equilateral triangle the larger the area created. I am now going to investigate the values with the base of 320 m - 340

  2. Maths:Fencing Problem

    but I am still not satisfied that this is the maximum so I will go on to investigate between 333.1 to 334. which means that I will draw another table using excel spreadsheet again.

  1. The Fencing Problem

    Therefore the other angles = (180-51.4)/2=64.3? each. I can split the isosceles triangle into 2 equal right-angled triangles and work out the area of the triangle, using trigonometry. I also know that each side of the heptagon is 1000/7=142.9m. I will use tangent to work out the height of the triangle because I know the adjacent (71.45m)

  2. Fencing Problem

    For me to get the results as accurate as possible I will be using the hero's formula. A B C A+B+C are the three sides of the scalene triangle that add up to give 1000m. To find the area of this triangle I will need the Hero's formula that gives me the area.

  1. Investigating different shapes to see which gives the biggest perimeter

    This is because I can create isosceles triangles within the hexagon just like in the pentagon. The only difference this time is that I will need to multiply the area of one isosceles triangle by 6 instead of 5 because there are 6 sides in this shape and so I can create up to 6 triangles within the shape.

  2. Geography Investigation: Residential Areas

    In this hypothesis I will use every street that I have surveyed. For the first part of the hypothesis I will only be using the 'external' questionnaire - this is the survey I did myself of the area. Table 6 Index Of Decay Street Sarum Hill Bounty Road Penrith Road

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work