• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

GCSE Mathematic Coursework T-totals Aim: to find a pattern that connects the T- number with the T- total

Extracts from this document...

Introduction

GCSE Mathematic Coursework

T-totals

Aim: to find a pattern that connects the T- number with the T- total.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

p

41

42

43

44

45

46

47

48

p+r

50

51

52

53

54

55

56

p+2r-1

p+2r

p+2r+1

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

T- number = T 40                                                         p = T-number

T- total = 263                                                              q = T-total

Grid size = 9 x 9                                                          r = grid size

Calculations:

p + p + p + p + p = 5p

r + 2r + 2r + 2r = 7r

-1 + 1 = 0

Formula for T-shape: q = 5p + 7r

Justification: (5 x 40) + (7 x 9) = 263

image00.png

Example:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

p

42

43

44

45

46

47

48

49

p+r

51

52

53

54

55

56

57

p+2r-1

p+2r

p+2r+1

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

T- number = T41                                                          p = T-number

T- total = 268                                                              q = T-total

Grid size = 9 x 9                                                         r = grid size

Calculations:

...read more.

Middle

41

42

43

44

45

46

47

p+r

49

50

51

52

53

54

55

p+2r-1

p+2r

p+2r+1

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

T- number = T39                                                          p = T-number

T- total = 258                                                              q = T-total

Grid size = 9 x 9                                                         r = grid size

Calculations:

p + p + p + p + p = 5p

r + 2r + 2r + 2r = 7r

-1 + 1 = 0

Formula for T-shape: q = 5p + 7r

Justification: (5 x 39) + (7 x 9) = 258

image00.png

The examples above give evidence to justify that the formula (q = 5p + 7r) works for all T- shapes that are rotated 1800.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

I will now alter the grid sizes to try and justify as to whether my formula works on different grid sizes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

p

36

37

38

39

40

41

42

p+r

44

45

46

47

48

49

p+2r-1

p+2r

p+2r+2

53

54

55

56

57

58

59

60

61

62

63

64

T- number = T35                                                          p = T-number

T- total = 231                                                              q = T-total

Grid size = 8 x 8                                                         r = grid size

Calculations:

p + p + p + p + p = 5p

r + 2r + 2r + 2r = 7r

-1 + 1 = 0

Formula for T-shape: q = 5p + 7r

Justification: (5 x 35) + (7 x 8) = 231

The example above justifies clearly that the formula (q = 5p + 7r) works for all T-shapes that are rotated 1800.

1

2

3

4

5

6

7

p

9

10

11

12

p+r

14

15

16

p+2r-1

p+2r

p+2r+1

20

21

22

23

24

25

Now I am going to change the grid size to a completely contrasting size, this time the grid size is 5 x 5 and a contrasting T-number will be used.

1

2

3

4

5

6

7

8

9

10

 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

T- number = T8                                                         p = T-number

T- total = 75                                                              q = T-total

Grid size = 5 x 5                                                       r = grid size

Calculations:

p + p + p + p + p = 5p

r + 2r + 2r + 2r = 7r

-1 + 1 = 0

Formula for T-shape: q = 5p + 7r

Justification: (5 x 8) + (7 x 5) = 75

Although this time the T-number I have used is different from the numbers used before the outcome is still exactly the same. This justifies that the formula (q = 5p + 7r) works for any T-shape that has a rotation of 1800 regardless of the T-number or the grid size.

image00.png

Overall after using various T-numbers and different grid sizes I have come to the conclusion that the formula for T-shapes that are rotated 1800 is (q = 5p + 7r). Using the formula I can now calculate different T-totals for different grid sizes and show a general pattern. Below are the patterns from the grid sizes I used.

9 x 9 general pattern:

T40

T41

T42

T43

263

268

273

278

As the T-numbers increase by 1, the T-total increases by 5.

8 x 8 general pattern:

T35

T36

T37

T38

231

236

241

246

As the T-numbers increase by 1, the T-total increases by 5.

5 x 5 general pattern:

T8

T9

T10

T11

75

80

85

90

As the T-numbers increase by 1, the T-total increases by 5.

My formula to calculate the T-total is the same for all of these grid sizes (when the T-shape is rotated 1800). This justifies my formula, (q = 5p + 7r).

image00.png

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

p-2r-1

p-2r

p-2r+1

33

34

35

36

37

38

39

p-r

41

42

43

44

45

46

47

48

p

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

...read more.

Conclusion

) works for all standard T-shapes. Below is another example but this time the grid size is 5 x 5.

1

2

3

4

5

  6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

p-2r-1

p-2r

p-2r+1

4

5

6

p-r

8

9

10

11

p

13

14

15

16

17

18

19

20

21

22

23

24

25

T- number = T12                                                        p = T-number

T- total = 25                                                              q = T-total

Grid size = 5 x 5                                                       r = grid size

Calculations:

p + p + p + p + p = 5p

-r + -2r + -2r + -2r = -7r

-1 + 1 = 0

Formula for T-shape: q = 5p – 7r

Justification: (5 x 12) - (7 x 5) = 25

image00.png

Overall after using various T-numbers and different grid sizes I have come to the conclusion that the formula for standard T-shapes is (q = 5p - 7r). Using the formula I can now calculate different T-totals for different grid sizes and show a general pattern. Below are the patterns from the grid sizes I used.

9 x 9 general pattern:

T49

T50

T51

T52

182

187

192

197

As the T-numbers increase by 1, the T-total increases by 5.

8 x 8 general pattern:

T38

T39

T40

T41

134

139

144

149

As the T-numbers increase by 1, the T-total increases by 5.

5 x 5 general pattern:

T12

T13

T14

T15

25

30

35

40

As the T-numbers increase by 1, the T-total increases by 5.

My formula to calculate the T-total is the same for all of these grid sizes (standard T-shape). This justifies my formula, (q = 5p - 7r).

...read more.

This student written piece of work is one of many that can be found in our GCSE T-Total section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE T-Total essays

  1. Marked by a teacher

    T-total coursework

    5 star(s)

    in the new terms. By adding the new terms together I can get a formula for vertical translation: (n+2h+3) + (n+2h+3-w) + (n+2h+3-2w) + (n+2h+3-2w-1) + (n+2h+3-2w+1) = 5n + 10h +15 - 7w and when this is factorised I get: 5(n + 2h + 3)

  2. T-Shapes Coursework

    36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 3rd T-Shape: T-Total 19

  1. The T-Total Mathematics Coursework Task.

    The T-shapes including rotations on an 10 by 10 Grid This 10 by 10 grid has been a success as I have been testing the formula previously discovered with it. The formula has been proven to work with this number grid, and I am now confident that it is fool proof and is universal to all grids.

  2. T-Shapes Coursework

    n x 5 - 63 = t If I was to keep the '5 x ...' it would seem correct as there is only going to be 5 boxes in the t-shape. For the 63 I think I will change it to 7 x 8 being the 8 to represent the 8x8 grid, 7 x 8 = 56.

  1. T-Shapes Coursework

    The Sum of the Tail equals the Middle Number plus the Grid Width. 5) Generalisation It can be assumed that for all possible locations of the 3x1 "T" on the width g grid, these patterns will be true. Therefore, the following logic can be used to create a formula where:

  2. T-Total Coursework

    After this I will have to investigate the relationship between the T-Total, the T-Number and the grid size. Here we are doing what we did in the last section but finding out more about the grid size and what it is capable of doing.

  1. t totals gcse grade A

    T 7x7grid 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

  2. Objectives Investigate the relationship between ...

    to find the T-total of a 90� rotated T-shape, we would be able to do so by simply adding '70' to the current T-total. x = current T-total + 70 (where 'x' is the new T-total to be found...) Now I will find an algebraic formula for finding the T-total of any 90� rotated T-shape in a 9x9 grid.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work