• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

How many arrangements for 2 counters in a line, in grids of various sizes ranging from 2x2 up to 8x8? (Basic data and information). I will also be finding out how many combinations on an NxN grid.

Extracts from this document...

Introduction

Some Questions

  • How many arrangements for 2 counters in a line, in grids of various sizes ranging from 2x2 up to 8x8? (Basic data and information).
  • I will also be finding out how many combinations on an NxN grid.

The Plan

First I am going to find out how many arrangements there are in different grid sizes.

(2x2, 3x3, 4x4, 5x5, 6x6, 7x7, 8x8). I will then put all these results into a table. I will then be able to analyse the data and look for patterns within the numbers. This will allow me to start calculating what a possible formula might be.

image00.png

Possible Formula

For the diagonal combinations this could be the formula

(N-1) x (N-1) + (N-1) x (N-1) = All possible diagonal combinations.

...read more.

Middle

9x9 diagonal (9-1) x (9-1) = 64 + (9-1) x (9-1) = 128

9x9 horizontal and vertical (9-1) x9 = 72 + (9-1) x9 = 144

128 + 144 = 272

Total combinations for 9x9 grid according to formula = 272

10x10 diagonal (10-1) x (10-1) = 81 + (10-1) x (10-1) = 162

10x10 horizontal and vertical (10-1) x10 = 90 + (10-1) x10 = 180

162 + 180 = 342

Total combinations for 10x10 grid according to formula = 342

This table is proof that the formula works

image01.png

Why does it work?

The formula:

(N-1) x (N-1) + (N-1) x (N-1) +(N-1) x N + (N-1) x N = Total Combinations is the vertical/horizontal equation (highlighted in blue) and the diagonal equation (high lighted in red) put together. This works because on the horizontal and vertical combinations that you have on a 9x9 grid you have 9 dots across.

...read more.

Conclusion

(N-1) x N + (N-1) x N. You then add all the results together to give a total number of combinations on your grid.

Some Answers

  1. Combinations on a 4x4 grid = 42
  2. There are 30 more combinations on a 5x5 grid than on a 4x4 grid
  3. Other grids see page containing diagram on first page
  4. Arrangements on a NxN grid =

(N-1) x (N-1) + (N-1) x (N-1) + (N-1) + (N-1) x N + (N-1) x N = arrangements

Conclusion

I conclude that my investigation was successful. I think this because the formula I have created is more effective than and just as accurate as the diagrams. This is because drawing lots of diagrams is longwinded and time consuming and working out this short formula is much quicker and easier.

...read more.

This student written piece of work is one of many that can be found in our GCSE T-Total section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE T-Total essays

  1. Noughts and Crosses Problem Statement:Find the winning lines of 3 in grids of ...

    I used the difference method to find this rule: 3 4 5 6 2 8 18 32 \ / \ / \ / 6 10 14 \ / \ / 4 4 This shows that the rule will begin with 2n�.

  2. t-totals. I will be doing three grids, a 10 x 10 grid, a 9 ...

    The next grid I will be doing is the 9 x 9 grid. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

  1. T-Total Investigation

    between the centre and the v number g = grid width d = distance between new v number and the centre of rotation If we use this formula to generate an answer; T=5(41+(3x9)+3)+2 T=5(71)+2 T=355+2 T=357 Thus proving this

  2. Urban Settlements have much greater accessibility than rural settlements. Is this so?

    Bexley is a very commuter orientated village; so more people use their cars to get to work. Also, Bexley has a school whereas South Darenth does not. Bexley and South Darenth villages are very much alike in road system, but Bexley is more developed.

  1. T totals. In this investigation I aim to find out relationships between grid sizes ...

    25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

  2. T-shapes. In this project we have found out many ways in which to ...

    This is another way to work out the t-total. What we need now is a formula for the relationship between the t-total and the t-number. I have found a formula which is 5t-number-63 = t-total. The question is how did we work out this formula and what can we do with it?

  1. Number Grids.

    This proves my formula for grid 5x5 is correct. Grid 6x6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 I found that

  2. ICT Coursework: Data Management Systems

    for total cards bought; * It must be able to produce a total for profit/loss; * It must be able to show how many cards are in stock; * It must be able to look up individual cards; * It must include the company logo, and hyperlink to the company

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work