• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating how the numbers worked on a number grid.

Extracts from this document...

Introduction

Maths GCSE Coursework

Kaleigh Mills

Investigation

 I was given the task of investigating how the numbers worked on a number grid. This is what I did to find out:

I chose a grid of four numbers and I multiplied the Top Left (TL) by the Bottom Right (BR) then I did the same with the Top Right (TR) and the Bottom Left (BL). I then found out the difference between the two outcomes.

n

n+1  

n+10

n+

11

E.g.

12

13

22

23

44

45

54

55

After trying a few 2 x 2 grids I then went on to do some 3 x 3 grids.

n

n + 2

n + 20

n + 22

E.g.

61

62

63

71

72

73

81

82

83

5

6

7

15

16

17

25

26

27

n

n+3

n+ 30

n+

33

n(n + 33) = n2 + 33n

(n + 3)

...read more.

Middle

n+40
n+44

53

54

55

56

57

63

64

65

66

67

73

74

75

76

77

83

84

85

86

87

93

94

95

96

97

5

6

7

8

9

15

16

17

18

19

25

26

27

28

29

35

36

37

38

39

45

46

47

48

49

       After testing a lot of grids I have discovered that the rule for a square of any size is  

       (n-1)2x10. To prove this I am going to test it for a 6 x 6 grid.

Prediction

I predict that for a 6 x 6 grid the difference will always be 250.

For a 6 x 6 grid the algebraic formula is:

n(n + 55) = n2 + 55n

(n + 5)(n + 50) = n2 + 55n + 250

Difference = 250

Testing

2

3

4

5

6

7

12

13

14

15

16

17

22

23

24

25

26

27

32

33

34

35

36

37

42

43

44

45

46

47

52

53

54

55

56

57

By predicting what the outcome would be with

...read more.

Conclusion

6 x 6 grid

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

7

8

13

14

22

23

24

28

29

30

34

35

36

After testing a few square grids from a 6 x 6 grid I found the differences to be 6 and 24, these are both multiples of 6. Therefore I have now proved that my prediction is correct.

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Number Grid Coursework

    on the left of the minus sign, and not from the more simply factorised "a(a + 10e + d)"

  2. Number Grids Investigation Coursework

    - (top left x bottom right) = (a + n - 1) (a + mw - w) - (a (a + mw - w + n - 1)) = a2 + amw - aw + an + mnw - nw - mw - a + w - (a2 + amw - aw + an - a)

  1. What the 'L' - L shape investigation.

    multiplied by g to allow it to work in any sized grid. So far my formula consists of: - (CL) + (- ( ?x )g + (?y)) I will use the same symbols that I used in the formula in Part 2 and will be applying the plus and minus rule.

  2. Number Grid Investigation.

    46 48 50 52 54 66 68 70 72 74 86 88 90 92 94 Z (n-1)(d-1) 10 (5-1)(3-1) = 80 Using the above calculation and formula the Product difference should be 80. Let's see if it is... PD = (46 X 94)

  1. Algebra Investigation - Grid Square and Cube Relationships

    To obtain the overall algebraic box, for any gxg grid, it is necessary to refer back to the previously stated formulae for calculating the individual terms that should be present in the corners. It is therefore possible to use the grids to find the overall, constant formula for any rectangle

  2. Number grid Investigation

    with the top right number and the 1 2 10 11 bottom left number: 2 x 10 = 20 20 - 11 = 9 Then I found the difference of 9: I repeated this process four times with other numbers from the grid to see if the difference would change.

  1. Mathematical Coursework: 3-step stairs

    70 71 72 49 50 51 52 53 54 55 56 57 58 59 60 37 38 39 40 41 42 43 44 45 46 47 48 25 26 27 28 29 30 31 32 33 34 35 36 13 14 15 16 17 18 19 20 21 22 23

  2. number grid

    I will conduct this research using another 2 of these boxes from the overall cardinal10x10 number grid. My predication also seems to be true in the cases of the previous 2 number boxes. Although it is quite certain that this trend would be observed in all number boxes of this

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work