• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating how the numbers worked on a number grid.

Extracts from this document...

Introduction

Maths GCSE Coursework

Kaleigh Mills

Investigation

 I was given the task of investigating how the numbers worked on a number grid. This is what I did to find out:

I chose a grid of four numbers and I multiplied the Top Left (TL) by the Bottom Right (BR) then I did the same with the Top Right (TR) and the Bottom Left (BL). I then found out the difference between the two outcomes.

n

n+1  

n+10

n+

11

E.g.

12

13

22

23

44

45

54

55

After trying a few 2 x 2 grids I then went on to do some 3 x 3 grids.

n

n + 2

n + 20

n + 22

E.g.

61

62

63

71

72

73

81

82

83

5

6

7

15

16

17

25

26

27

n

n+3

n+ 30

n+

33

n(n + 33) = n2 + 33n

(n + 3)

...read more.

Middle

n+40
n+44

53

54

55

56

57

63

64

65

66

67

73

74

75

76

77

83

84

85

86

87

93

94

95

96

97

5

6

7

8

9

15

16

17

18

19

25

26

27

28

29

35

36

37

38

39

45

46

47

48

49

       After testing a lot of grids I have discovered that the rule for a square of any size is  

       (n-1)2x10. To prove this I am going to test it for a 6 x 6 grid.

Prediction

I predict that for a 6 x 6 grid the difference will always be 250.

For a 6 x 6 grid the algebraic formula is:

n(n + 55) = n2 + 55n

(n + 5)(n + 50) = n2 + 55n + 250

Difference = 250

Testing

2

3

4

5

6

7

12

13

14

15

16

17

22

23

24

25

26

27

32

33

34

35

36

37

42

43

44

45

46

47

52

53

54

55

56

57

By predicting what the outcome would be with

...read more.

Conclusion

6 x 6 grid

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

7

8

13

14

22

23

24

28

29

30

34

35

36

After testing a few square grids from a 6 x 6 grid I found the differences to be 6 and 24, these are both multiples of 6. Therefore I have now proved that my prediction is correct.

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Number Grids Investigation Coursework

    = a2 + amw - aw + an + mnw - nw - mw - a + w - a2 - amw + aw - an + a = mnw - nw - mw + w = w (mn - n - m + 1) = w (m - 1)

  2. Number Grid Coursework

    As it happened, I noticed that all the differences tested in this section were multiples of their respective grid widths i.e. 112 is a multiple of 14 and 33 is a multiple of 11. I also noticed that the (p - 1)(q - 1)

  1. Number Grid Investigation.

    (4 X 72) - (12 X 64) = 480. This is correct. What next? I am now going to find a general formula for a grid with multiples. In the one above, multiples of 2, the formula was... 4Z(n-1)(d-1) The multiple number, 2, is squared to give 4 (as in 4Z) Mini prediction.

  2. Algebra Investigation - Grid Square and Cube Relationships

    The bottom right number in the rectangle is directly linked to the top right and bottom left numbers. It is the sum of these that equal the bottom right, or: Formula 1: Bottom Right (BR) = Top Right (TR) + Bottom Left (BL)

  1. What the 'L' - L shape investigation.

    I have also proved that 5L is common to all of my calculations using a standard five cell L-Shape. The algebraic formula calculated from the L-Shape has allowed me to calculate the final parts of my formulae given the grid size.

  2. Number Grid Investigation

    There are significant patterns throughout these results. In the 3 column across the top and on the left hand side the numbers go up in multiples of 20, this the 2 times table multiplied by 10. For the 4 column it's the 3 times table multiplied by 10...as you can

  1. Maths - number grid

    28x91 - 21x98 2548 - 2058 Difference = 490 I will again use algebra to prove my defined difference of 490 for any given 8x8 square is correct. (r+7)(r+70)- r(r+77) r(r+70) +7 (r+70)- r -77r r +70r+7r+490-r -77r =490 I now feel that I have identified and proven a

  2. number grid

    I am now going to repeat my investigation again so that my results are more reliable and so I can create a table with them. _2236 2226 10 For this 2 X 2 grid I have done the exact same thing as I did for the first one.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work