• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating how the numbers worked on a number grid.

Extracts from this document...

Introduction

Maths GCSE Coursework

Kaleigh Mills

Investigation

 I was given the task of investigating how the numbers worked on a number grid. This is what I did to find out:

I chose a grid of four numbers and I multiplied the Top Left (TL) by the Bottom Right (BR) then I did the same with the Top Right (TR) and the Bottom Left (BL). I then found out the difference between the two outcomes.

n

n+1  

n+10

n+

11

E.g.

12

13

22

23

44

45

54

55

After trying a few 2 x 2 grids I then went on to do some 3 x 3 grids.

n

n + 2

n + 20

n + 22

E.g.

61

62

63

71

72

73

81

82

83

5

6

7

15

16

17

25

26

27

n

n+3

n+ 30

n+

33

n(n + 33) = n2 + 33n

(n + 3)

...read more.

Middle

n+40
n+44

53

54

55

56

57

63

64

65

66

67

73

74

75

76

77

83

84

85

86

87

93

94

95

96

97

5

6

7

8

9

15

16

17

18

19

25

26

27

28

29

35

36

37

38

39

45

46

47

48

49

       After testing a lot of grids I have discovered that the rule for a square of any size is  

       (n-1)2x10. To prove this I am going to test it for a 6 x 6 grid.

Prediction

I predict that for a 6 x 6 grid the difference will always be 250.

For a 6 x 6 grid the algebraic formula is:

n(n + 55) = n2 + 55n

(n + 5)(n + 50) = n2 + 55n + 250

Difference = 250

Testing

2

3

4

5

6

7

12

13

14

15

16

17

22

23

24

25

26

27

32

33

34

35

36

37

42

43

44

45

46

47

52

53

54

55

56

57

By predicting what the outcome would be with

...read more.

Conclusion

6 x 6 grid

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

7

8

13

14

22

23

24

28

29

30

34

35

36

After testing a few square grids from a 6 x 6 grid I found the differences to be 6 and 24, these are both multiples of 6. Therefore I have now proved that my prediction is correct.

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Number Grids Investigation Coursework

    - (top left x bottom right) = (a + n - 1) (a + mw - w) - (a (a + mw - w + n - 1)) = a2 + amw - aw + an + mnw - nw - mw - a + w - (a2 + amw - aw + an - a)

  2. What the 'L' - L shape investigation.

    In Part 2 of this investigation I used a pure algebraic L-Shape to calculate the final part of the formula. By examining the shape more carefully I have found that the up-axis is always multiplied by g. This tells me that my up-axis in the formula will have to be

  1. Number Grid Coursework

    Extension Having done this, I saw that my formula would only work for square boxes on a width 10 grid. To improve the usefulness of my formula, I wondered what would happen to the difference of the two products if I varied the length of the box and the width of the box i.e.

  2. Algebra Investigation - Grid Square and Cube Relationships

    3 x Width Rectangles 3x2 Rectangles Firstly, a rectangle with applicable numbers from the grid will be selected as a baseline model for testing. n n+1 n+10 n+11 n+20 n+21 Stage A: Top left number x Bottom right number = n(n+21)

  1. GCSE Maths coursework - Cross Numbers

    I always get 4xX as an answer. Therefore this is a master formula for this shape and this grid. X-g (X-1) X (X+1) X+g c) [(X+g) - (X-g)] - [(X+1) - (X-1)] = [X+g - X +g] - [X+1 - X+1] = x +g -x +g -x-1 +x - 1

  2. Maths Grid Investigation

    Justifying My Results 8 x 8 gird: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

  1. Maths - number grid

    9x25 - 5x29 225 -145 Difference = 80 56x72 - 52x76 4032 -3952 Difference = 80 As can be seen my defined difference for any 5x3 rectangle gives me an answer of 80. I am going to use algebra to ensure my answer is accurate.

  2. 100 Number Grid

    that for every 4 x 4 square, the product difference will be 90. The following equation will prove that my prediction is correct. X X + 1 X+ 2 X + 3 X +10 X + 11 X + 12 X + 13 X + 20 X + 21 X

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work