• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Investigating how the numbers worked on a number grid.

Extracts from this document...

Introduction

Maths GCSE Coursework

Kaleigh Mills

Investigation

 I was given the task of investigating how the numbers worked on a number grid. This is what I did to find out:

I chose a grid of four numbers and I multiplied the Top Left (TL) by the Bottom Right (BR) then I did the same with the Top Right (TR) and the Bottom Left (BL). I then found out the difference between the two outcomes.

n

n+1  

n+10

n+

11

E.g.

12

13

22

23

44

45

54

55

After trying a few 2 x 2 grids I then went on to do some 3 x 3 grids.

n

n + 2

n + 20

n + 22

E.g.

61

62

63

71

72

73

81

82

83

5

6

7

15

16

17

25

26

27

n

n+3

n+ 30

n+

33

n(n + 33) = n2 + 33n

(n + 3)

...read more.

Middle

n+40
n+44

53

54

55

56

57

63

64

65

66

67

73

74

75

76

77

83

84

85

86

87

93

94

95

96

97

5

6

7

8

9

15

16

17

18

19

25

26

27

28

29

35

36

37

38

39

45

46

47

48

49

       After testing a lot of grids I have discovered that the rule for a square of any size is  

       (n-1)2x10. To prove this I am going to test it for a 6 x 6 grid.

Prediction

I predict that for a 6 x 6 grid the difference will always be 250.

For a 6 x 6 grid the algebraic formula is:

n(n + 55) = n2 + 55n

(n + 5)(n + 50) = n2 + 55n + 250

Difference = 250

Testing

2

3

4

5

6

7

12

13

14

15

16

17

22

23

24

25

26

27

32

33

34

35

36

37

42

43

44

45

46

47

52

53

54

55

56

57

By predicting what the outcome would be with

...read more.

Conclusion

6 x 6 grid

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

7

8

13

14

22

23

24

28

29

30

34

35

36

After testing a few square grids from a 6 x 6 grid I found the differences to be 6 and 24, these are both multiples of 6. Therefore I have now proved that my prediction is correct.

...read more.

This student written piece of work is one of many that can be found in our GCSE Number Stairs, Grids and Sequences section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Number Stairs, Grids and Sequences essays

  1. Number Grids Investigation Coursework

    = a2 + amw - aw + an + mnw - nw - mw - a + w - a2 - amw + aw - an + a = mnw - nw - mw + w = w (mn - n - m + 1) = w (m - 1)

  2. What the 'L' - L shape investigation.

    + (-3g + 3) PART 3 I will now use grids and L-Shapes of different sizes; I will try more transformations and combinations of transformations. I will look into the relationship between the L-Sum, the L-Number, the grid size and the transformations.

  1. Number Grid Coursework

    Product 2 (TR x BL) Difference (P'duct 2 - P'duct 1) 6 348 448 100 17 1173 1273 100 23 1725 1825 100 27 2133 2233 100 45 4365 4465 100 c) Here are the results of the 5 calculations for 5x3 Box on Width 10 Grid: Top-Left Number Product 1 (TL x BR)

  2. Algebra Investigation - Grid Square and Cube Relationships

    = n+ (Height (h) - 1) x 10 n ~ n+w-1 ~ ~ ~ n+20 ~ n+20+w-1 The above grid simplifies to form: n ~ n+w-1 ~ ~ ~ n+20 ~ n+19+w Stage A: Top left number x Bottom right number = n(n+19+w)

  1. GCSE Maths coursework - Cross Numbers

    I always get 4xX as an answer. Therefore this is a master formula for this shape and this grid. X-g (X-1) X (X+1) X+g c) [(X+g) - (X-g)] - [(X+1) - (X-1)] = [X+g - X +g] - [X+1 - X+1] = x +g -x +g -x-1 +x - 1

  2. Maths Grid Investigation

    33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 6 x 6 grid: 1 2 3 4 5 6 9 10 11 12 13 14 17 18

  1. Maths - number grid

    - s(s+24) s(s+20)+4(s+20) - s -24s s +20s +4s+80 - s -24s =80 I have now calculated the answer for my 3x2 rectangles and came to a difference of 20 and an answer for my 5x3 rectangles and came to a defined difference of 80.

  2. 100 Number Grid

    + 22 X + 23 X + 30 X + 31 X + 32 X + 33 Step 1. x (x + 33) Step 2. (x + 3)(x + 30) Step 3. (x2 + 33x + 90) - (x2 - 33x)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work