• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Magic E Coursework

Extracts from this document...

Introduction

Magic E Coursework

For the E-Total coursework, I am investigating different algebraic formula for the letter “E”, when it is placed on a numbered grid. In each E, there are 11 squares.

I will first map out an “E” on a 10 X 8 Grid

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

From this diagram you can see that the total of the numbers in the E is:

1+2+3+9+17+18+19+25+33+34+35 = 196

We can move the “E” along the grid to find out the totals of other E’s.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

From this diagram you can see that the total of the numbers in this E is:

2+3+4+10+18+19+20+26+34+35+36 = 207

Instead of drawing out the next E, we can make a table of E’s and there e-totals. If we call the top left number the e-number (shown as “e”) then we can see if there is a pattern between the e-number and e-totals. We use the number in the top left hand corner as the e-number because it’s the smallest and therefore easiest to work with

E-number

Numbers in E

E-total

1

1,2,3,9,17,18,19,25,33,34,35

196

2

2,3,4,10,18,19,26,34,35,36

207

3

3,4,5,11,19,20,21,27,35,36,37

218

4

4,5,6,12,20,21,22,28,36,37,38

229

5

5,6,7,13,21,22,23,29,37,38,39

240

From the table you can see that when the e number goes up by 1, the e-total goes up by 11. So each time we move the E one space to the right, the total goes up by 11. This is because each square in the E has + 1 added to it when moved to the right.

...read more.

Middle

11

 17

25

26

27

33

41

42

43

11e + 185 = e-total

(11x9) + 185 = e-total

99 + 185 = 284

9 + 10 + 11 + 17 + 25 + 26 +27 + 33 + 41 + 42 + 43 = 284

This proves that the formula is correct and we can now work out the e-total of any E on a 10 x 8 grid

I will now plot out an E on a 10 x 9 grid to see if I can find a formula for the e-total of and E on any grid size. The formula I already have (11e +185) is only correct when used on a 10 x 8 grid.

If we follow the example of the 10 x 8 grid, then we can work out the formula for this grid fairly quickly by converting the E into algebra and then checking it with a random number.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

When converted to algebra the E is:

e

e+1

e+2

e+8

e+16

e+17

e+18

e+24

e+32

e+33

e+34

Therefore the formula should be:

e-total = e + (e + 1) + (e + 2) + (e + 9) + (e + 18) + (e + 19) + (e + 20) + (e + 27) + (e + 36) + (e + 37) + (e + 38)

e-total = 11e + 207


Now lets check with a random number, 10.

10

11

12

19

28

29

30

37

46

47

48

11e + 207 = e-total

(11x10) + 207 = e-total

110 + 207 = 317

10 + 11 + 12 + 19 + 28 + 29 + 30 + 37 + 46 + 47 + 48 = 317

This proves that the formula is correct and we can now work out the e-total of any E on a 10 x 9 grid


...read more.

Conclusion

Therefore the formula for the middle row is R = x(e + 2g) + ½ x(x – 1)

To work out the bottom row we do exactly the same except there is an extra 4g added to the e for each square.

Therefore the formula for the bottom row is R = x(e + 4g) + ½ x(x – 1)

The final E will look like this:

e

e+1

e+2

-----

e+(x-1)

e+g

e+2g

e+2g+1

e+2g+2

-----

e+2g+(x-1)

e+3g

e+4g

e+4g+1

e+4g+2

-----

e+4g+(x-1)

To get the final formula for arm length we need to add up the formulae from each of the rows and add up the 2 squares in between. (e +g and e +3g)

e-total = xe + ½ x(x – 1) + x(e + 2g) + ½ x(x – 1) + x(e + 4g) + ½ x (x – 1) + e + g + e + 3g

e-total  = xn + x (n + 2g) + x (n + 4g) + 1.5x (x – 1) + 2n + 4g

e-total = xn + xn + 2gx + xn + 4gx + 2n + 4g + 1.5x (x – 1)

e-total  = (3x + 2) (n + 2g) + 1.5x (x – 1)

Finally we must check that the formula works by choosing random numbers:

E number = 7

Arm length = 5

Grid size = 6

7

8

9

10

11

13

19

20

21

22

23

25

31

32

33

34

35

e-total = 7 + 8 + 9 + 10 + 11 + 13 + 19 + 20 + 21 + 22 +                                                            23 + 25 + 31 + 32 + 33 + 34 + 35

e-total = 353

e-total = (3x + 2)(e + 2g) + 1.5x(x – 1)

e-total =  (3 x 5 + 2)(7 + 2 + 6) + 1.5 x 5 x 4

e-total = 17 x 19 x 30

= 353

This proves the formula correct so finally we have a formula, which can find the e-total of any e on any grid size with any arm length.

...read more.

This student written piece of work is one of many that can be found in our GCSE T-Total section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE T-Total essays

  1. Marked by a teacher

    T-total coursework

    5 star(s)

    is 1 x 9 = 9. This means that the terms in the T-shape have been moved down by 9 squares, not 9 rows, and 9 squares is equal to 1 row. Therefore the T-shape has been moved down by 1 row.

  2. T-Shapes Coursework

    21 42 22 47 23 52 24 57 25 62 26 67 We can see clearly that there is a pattern and a relationship within these numbers. For every one the Tn goes up, the Tt goes up by five.

  1. T-Shapes Coursework

    I predict the total will be 238 - 5 = 233 37 + 46 + 47 + 48 + 55 = 233 For this t-shape all the original rules from the first t-shape applied to this changed t-shape. T-total = 323 To move this one step right I would have

  2. T-Shapes Coursework

    41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

  1. Maths Coursework- Borders

    + 13 + 5 + 1 25 4 1 + 5 + 13 + 25 + 13 + 5 + 1 63 5 1 + 5 + 13 + 25 + 41 + 25 + 13 + 5 + 1 129 6 1 + 5 + 13 + 25 +

  2. T-Total Coursework

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

  1. Maths Coursework T-Totals

    Straight away, we can generalize that, When a T-Shape is translated vertically by a positive figure its T-Total is less than the original T-Total If we table these results along with all the vertical translation results from 41 to 14 (for v), we should easily see a pattern (on a

  2. Borders Coursework

    . = 2n� - 6n + c Formula: 2n� - 6n + When n = 1 2 � (1�) - (6 � 1) = 2 - 6 = - 4 + ? = 1 = - 4 + 5 = 1 c = 5 .

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work