• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  21. 21
    21
  • Level: GCSE
  • Subject: Maths
  • Word count: 5723

Maths coursework

Extracts from this document...

Introduction

Maths coursework

During my investigation I will be investigating whether there is a relationship between the T-number and the T-total.

The T-shape will look like: (in this example I will be using the numbers 1, 2, 3, 11, 20)

The T-total is the number at the bottom of the T-shape. The T-total is the sum of all the numbers inside the T-shape.

          Throughout my investigation I will use a key to refer to the T-total, T-number and grid size.

For the first part of my investigation I will be investigating whether there is a relationship between T and N for numbers in a G9. On the first grid I have shaded places where N must not go; the reason that N cannot go in these places is because if there was a case where N was in these places then there would not be five numbers in the T-shape. Whilst trying to find the relationship I will move the T-shape systematically through each grid.

To find the relationship I could use:

  • The sequence method
  • Simultaneous equations
  • Graphical methods

However, I will only use two of these methods. But for every relationship I will test whether the formula I conclude is correct, I will do this by randomly putting a T-shape into the grid and apply the formula into the numbers inside the T-shape. Also just to make sure that my conclusions are accurate I will use an algebraic approach; I use this approach because it shows a proof to an outcome.

Part 1, finding the formula relating T and N

The first thing that I notice when looking at T is that the values consistently ascend in 5’s when N ascend in 1’s. This states that there is a linear relationship.

Finding the formula.

...read more.

Middle

        G (grid size)

      T     (t-total)

       G9

       G8

       G7

         T = 5N - 63

         T = 5N - 56

         T = 5N – 49

I have noticed that in all of the formulas it is consistent that 5N is in the formula. Also the second term in the formula is the sum of G × -7.

Therefore I predict that the general formula is T = 5N – 7G

I will now test my prediction by using G10 and grid 11. I will use N = 25

T = (5 × 25) – (7 × 10)

T = 125 – 70

T = 55

Now I will use addition to see if T is the same as when I used the formula

T = 25 + 15 + 4 + 5 + 6 = 55

I can now say that the forula that I predicted is correct, this is because when I used the predicted formula the answer I got to was 55 and when I used addition the answer I got was the same of 55.

However if you look at G10 in grid 11 when N = 25 there is a relationship between T, N and G. this is:

I will now add up all of that is in the t-shape and put it into its simplest form:

T = N + (N – G) + (N – 2G) + (N – 2G + 1) + (N – 2G – 1)

T = 5N – 7G

Therefore this also correlates with the formula that I previously found, therefore the formula of T = 5N – 7G is correct.

Part 3

Here I will investigate the effect of a translation (x/y) on t-total.

Whilst doing this investigation I will use T2 as the new t-total.

Horizontal translation (x/0) for all grid sizes:

Firstly I will use G8 to find the effect of (1/0).

I can say that the formula for the t-shape in grid 3 is 5N – 7G, this is because I proved it in part 2. Now to find the formula in grid 4 compared to 5N – 7G

T in grid 3 = 34

T in grid 4 = 39

Here it shows that (1/0) is 5 more than (0/0). Therefore the formula here is            

T2

...read more.

Conclusion

T = 5N + 5x – 5Gy + 7 – 5d – 5dG

If these are then combined for a translation (c/d) then:

T = 5N +5x – 5Gy + 7 +5c – 5d – 5Gc – 5Gd.

However this is only my prediction, therefore I will now test this by using the formula first to find out the t-total of the rotated and translated shape, and then I will manually add up the five terms inside the rotated and translated shape and if the results both comply then the formula must be correct. I will test this on G10 on grid 10, the original t-shape will have N54 then this will be translated (-2/-1) then this shape will be rotated from the point (2/-1):

T = (5×54) + (5×-2) – (5×10×-1) + 7 + (5×2) – (5×-1) – (5×10×2) – (5×10×-1)

T = 282

Now I will add the five terms inside the rotated shape from the translated shape, and if the sum of this equals 282, then the formula works:

T = 55 + 56 + 57 + 47 + 67

T = 282

This means that the overall formula for a translation (x/y), followed by a rotation of 90º clockwise (c/d) from the new t-total is T = 5N + 5x – 5Gy + 7 + 5c – 5d – 5Gc – 5Gd.

Evaluation:

Therefore overall from my investigation, I have found that:

  • For a translation (0/y) the general formula is T = 5N – 7G – 5Gy
  • For a translation (x/0) the general formula is T = 5N – 7G + 5x
  • For a translation (x/y) the general formula is T = 5N – 7G – 5Gy + 5x
  • For a rotation 90º clockwise about point (c/0) T = 5N + 7 + 5c – 5cG
  • For a rotation 90º clockwise about point (0/d) T = 5N + 7 – 5dG – 5d
  • For a rotation 90º clockwise about point (c/d) T = 5N + 7 – 5dG – 5d – 5Gy + 5x
  • For a translation (x/y),followed by a rotation of 90º clockwise from point (c/d) from the translated t-shape, T = 5N + 5x – 5Gy + 7 + 5c – 5d – 5Gc – 5Gd

However, due to time restriction I could only find the effects of a 90º clockwise rotation, but if time was not of the essence, then I could find the effect of a 180º rotation and 270º rotation and see if the is a connection between them all.

...read more.

This student written piece of work is one of many that can be found in our GCSE T-Total section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE T-Total essays

  1. Connect 4 - Maths Investigation.

    As height is the variable I will have to put it into the equation, I have decided to put it at the beginning. To work out the final rule I will have to put that into a current total. For Height4: [H(4L-9)] 4(4L-9)

  2. Objectives Investigate the relationship between ...

    To find this algebraic formula, I will find out a way to find the individual values in the T-shape: Let's refer to the T-number as 'n' * T34 25 26 27 34 35 36 43 44 45 * Tn 25 26 n-7 n n+1 n+2 43 44 n+11 The image

  1. T-Shapes Coursework

    the location of the "T" upon the grid. 2) Method Varying values of w will be tested to give different widths of wings for the "T". The widths will be 5, 7 and 9. Only odd numbers can be used for the wing width, because the "T" always has an equal number of boxes either side of the Middle Number.

  2. T-shapes. In this project we have found out many ways in which to ...

    The blue shape is the opposite of the red t-shape so therefore the formula for the blue t-shape is 5tn - 70 = t-total. The sign has become the opposite of what it use to be. This has happened in many cases before.

  1. T-Total. I will take steps to find formulae for changing the position of the ...

    This table is proving that the T shape above with the equations in it works. This example is from the T shape in a 9 x 9 grid found on the previous pages.

  2. T-Shapes Coursework

    5 x 21 = 105 - 63 = 42 Now let us find the T-total and see if our formula works properly. T-total (Tt) = 2 + 3 + 4 + 12 + 21 = 42 It does work! Okay so we have established a formula that works for T-Shapes

  1. T totals. In this investigation I aim to find out relationships between grid sizes ...

    1 2 3 4 5 6 7 8 9 Again using the "old" method we get a T-Total of 27, we have to start from scratch to make a formula so we can follow the steps used to find the original formula for Ta shapes.

  2. T-total Investigation

    3: 3 4 5 6 7 14 T-no 23 T-total: 3+4+5+6+7+14+23 = 62 I put the T-no in one column and the T-total in the other. T-no T-total 21 48 position 1 1 7 22 55 position 2 1 7 23 62 position 3 I saw that the T-no is

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work