• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  • Level: GCSE
  • Subject: Maths
  • Word count: 1456

T-shapes.I will investigate and find rules that connect the t-total to the t-number and the grid size.

Extracts from this document...

Introduction

MATHS COURSEWORK : t-shapes.

I will investigate and find rules that connect the t-total to the t-number and the grid size.

T = t number

X = grid size

To investigate and find a rule I will use a 4 x 4 grid as starting of with a smaller grid and going up can help spot a rule with much more ease.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

The t-number is 10 and the t-total is 1+2+3+6+10=22

I will try and investigate a rule by working out the difference between the t-total and the t-number, and then I will use an algebraic expression to work out the rule for grids of different sizes.

T-number = 10

T-total = 1+2+3+6+10= 22

7 x 4 (grid size) = 28

5tn- 28= t-total

5 x 10-28=22

Now I will investigate if this formulae works on different positions on a 4 x 4 grid.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

I will try a different t-shape.

The t-number is 11

The t-total is 27 (2+3+4+7+11)

I will substitute the following values into the formulae 5t – 7x (grid number)

5 X 11 = 55

7 X 4 = 28

55 – 28 = 27

This has proven to work on a 4 x 4 grid.

...read more.

Middle

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

I am first going to try and rotate the t-number 180 degrees so it is upside down.

I will do this as we already have a formula for the t-total (5t-63). I have used a 9x9 grid as this is the grid which the formula works on.

The t-shape I am going to use has a t number of:

T- number: 2

The old formula stated that we had to minus 63 away from 5 x the t-number but as this is upside down (rotated 180 degree) I am going to try and add the 63.

So 5 x t number makes 10 and + 63 = 73

To see if the formula has worked I will add all the numbers in the t-shape:

2+11+19+20+21 =73         THIS NOW PROVES THAT THE MINUS SIGN

                                                                         HAS WORKED

We have now found a formula for both the upright and upside down T- shape.

The next step is to move the shape on its side (90 degrees from the upright position) I move the t-number 90 degrees to the left.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

...read more.

Conclusion

an="1">

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

The formula for this t-shape must be:

5t-number +7 = t – total as the one above is the opposite.

I will now test this formula:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

 5 x 70 + 7 = 357

T-number = 70

T-total = 70+71+72+63+81 = 357

This formula works for all grid sizes and anywhere on the grid.

CONCLUSION

During this project we have learned how to find data and summaries it into smaller parts.

We have learnt to find and make rules and have put them into practice. This project has taught us how to make algebraic rules which can be put into use.

Here are the various rules we found out:

PART 1

T-total is 5t – 63

(This only works for 9x9 grid anywhere)

PART 2

5tn – 7x(grid number)

(This works for all grid sizes anywhere.

PART 3

Normal way up – 5t – 7x

90 degrees to the left – 5t – 7 x

90 degrees to the right- 5t + 7 x

180 degrees from upright : 5t + 7 x

...read more.

This student written piece of work is one of many that can be found in our GCSE T-Total section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE T-Total essays

  1. T-Shapes Coursework

    result of this, the pattern that Sum of Wing = wn can be deemed to be true. C) The Tail Length Pattern In Section 4, the Tail Length was tested to find a pattern. The pattern found was that: Sum of Tail = 1/2 l {2n + 10(l + 1)}

  2. The T-Total Mathematics Coursework Task.

    14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

  1. Objectives Investigate the relationship between ...

    values in the T-shape: Let's refer to the T-number as 'n' * T37 27 28 29 37 38 39 47 48 49 * Tn 27 28 n+8 n n+1 n+2 47 48 n+12 The image above shows exactly what needs to be done to n, the T-number to find the individual numbers in the T-shape.

  2. T totals. In this investigation I aim to find out relationships between grid sizes ...

    40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 T=(5x14)

  1. Maths Coursework T-Totals

    we must now try it on another grid size with another type of a combination translation, to verify that it is correct, I have chosen a grid width of 5, extended vertically to accommodate the combination translation: 1 2 3 4 5 6 7 8 9 10 11 12 13

  2. The object of this coursework is to find the relationship between the total value ...

    and the N number is 23. I will move the T-Shape across one column again. The total value of this T-Shape is 50 (3 + 4 + 5 + 14 + 24 = 50) and the N number is 24.

  1. Maths GCSE Coursework – T-Total

    15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 On a 6x5 grid with a T-Number of 15 the T-Total is 33, again working out the formula leads to t = 5x - 42 Again this is the same "magic number" as found

  2. T Total and T Number Coursework

    The General Formula After finding the formula for five different grid sizes it will now be necessary to find the general formula so that I can work out the T-total for a grid of any size and not just the grid sizes I have already done.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work