• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  21. 21
    21
  • Level: GCSE
  • Subject: Maths
  • Word count: 3897

T Total and T Number Coursework

Extracts from this document...

Introduction

Introduction

My plan is to investigate the relationship between the t-total and the t-number on an assortment of different grid sizes. The grid sizes that I will use in my investigation are; 9x9, 8x8, 7x7, 6x6, and 5x5. This should allow me to develop an accurate idea about the relationship between the two numbers and find formula for them.

After completing the first stage of the investigation and collecting results I will try other ideas regarding the t-number and t-total. I shall try things such as transformations and combinations of transformations and translations. This should allow me to see if there are any patterns developing. To do this I will once again use a variety of grid sizes. My results will be set out neatly and my final formulae and answers also set out in a clear conclusion.

Finding The Formula for each Different Grid Size.

I will now find all the formulas for five separate grids. The grids I will use are 9x9, 8x8, 7x7, 6x6 and finally 5x5. I will set them out in a linear equation so that the formula for each should be easy to find. I will use consecutive t-numbers so that I have a pattern to go from.

9x9 grid.        1                2                3                4                5

T= 20                21                22                23                24                

N=37                42                47                52                57

                        5                5                5                5

The second difference is constant so will include a 5. the formula for a 9x9 grid is Tn5-63

8x8 grid        1                2                3                4                5

T=18                19                20                21                22

N=34                39                44                49                54

        5                5                5                5

The formula for this is Tn5-56

7x7 grid        1                2                3                4                5

                T=16                17                18                19                20

                N=31                36                41                46                51

                        5                5                5                5

                The formula for this is Tn5-49

6x6 grid        1                2                3                4                5

                T=14                15                16                17                18

                N=28                33                38                43                48

                        5                5                5                5

                The formula for this is Tn5-42

5x5 grid        1                2                3                

                T=12                13                14

                N=25                30                35

  1. 5

The formula for this is Tn5-35

These are the formulas to work out the t-totals on the grid sizes that they are written next to.

The Different Formula for each Grid

...read more.

Middle

T= 20                21                22                23                24

N=37                42                47                52                57

        +5                +5                +5                +5

There being a difference of +5 in the sequence means that the formula will have a 5 in it somewhere. This ‘5’ ends up being the 5 and is in the general formula for the T-total.

The 7:

Using gxg to represent any grid size we can prove where the 7 comes from by doing the following.
 

n-2g-1    n-2g     n-2g+1

n-g

 n

Converting this into an actual t-shape off a real grid will give us the following.

For this example I will use a 9x9 grid.

60       61           62

70

 79

Using this example we can work out what the total for this equation will be.  It will be as follows:

(n-2g-1)+(n-2g)+(n-2g+1)+(n-g)+(n). This is equal to 5n-7g. To get this I added all the negative ‘g’s’ and that gave me a total of -7. This is how I got to my seven in the formula, this proves that there must be a seven in the formula for it to work correctly. You can also see that there are five lots of ‘n’ in this formula again. This five is from the general formula for the t-total. This is why there must be a five and a 7 in the general formula.

Translating the T and the effect it has on the T-total.

Now that I have found the general formula for the t-total on any grid size I must take the investigation one step further. I must now investigate the effect of translating the shape to a different point on the grid.

To do this I will use three different grid sizes, 9x9, 8x8 and finally 7x7. This will enable me to find a range of different formula for me to compare. After finding the different formula I will find the general formula for any grid size.

...read more.

Conclusion

T number (41) stays the same

Difference:

                       12                                                                      g+3

0       10          20                                            0         g+1         2g+2

                        28                                                                     3g+1

If we add all this up, 0+(g+1)+(g+3)+(2g+2)+(3g+1), then it equals 7g+7

Using the vectors from the tables in the previous pages we can find the final formula. Looking at what the formula is for a translation on a 9x9 grid I should be able to find the formula.

T=5n-7g+5x-5gy. If I add the 7g+7 to this then I should have the final formula for a +90 degree rotation. The final formula is 5n-7g+5x-5gy+7g+7, this will simplify to;

5n+5x-5gy+7. I must now repeat this for -90 degrees. Then I will prove that my formulas are correct.

-90 degrees general formula for Rotation and Translation

I will now find the last formula that I will need. This will be for -90 degrees. I shall use the same procedure as I have done when I found the previous two general formulas. I will use a 9x9 grid, I will show my working out below.

22        23            24

32

 41

48         39           30

40

 41

22 becomes 48- difference of 26

23 becomes 39- difference of 16

24 becomes 30- difference of 6

32 becomes 40- difference of 8

The t-number (41) stays the same.

Difference:

                   26                                                           3g-1

0           8            16                               0             g           2g-2  

                           6                                                             g-3

If we add up all the differences g+(3g-1)+(2g-2)+(g-3), then we get 7g-7.

Using the vectors from the tables in the previous pages we can find the final formula. Looking at what the formula is for a translation on a 9x9 grid I should be able to find the formula.

T=5n-7g+5x-5gy. If I add the 7g-7 to this then I should have the final formula for a     -90 degree rotation. The final formula is 5n-7g+5x-5gy+7g-7, this will simplify to;

5n+5x-5gy-7.This is how I have found all of my formulas for the rotations and the translations.

So the final formulas are:

For 180 degree rotation; 5n+7g+5x-5gy

For +90 degree rotation; 5n+5x-5gy+7

For -90 degree rotation; 5n+5x-5gy-7

...read more.

This student written piece of work is one of many that can be found in our GCSE T-Total section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE T-Total essays

  1. Given a 10 x 10 table, and a 3 steps stair case, I tried ...

    Using simultaneous equations with the two formula for "b" to find a b = 2 - 3a 8a + 2b = 5 8a + 2(2 - 3a) = 5 8a + 4 - 6a = 5 a = 1 2 So, because a = 0.5, then: b = 2 -

  2. T-Shapes Coursework

    The "-1" and "+1" cancel out each other when added to together. 8) Conclusion After this justification, it can now be said that for every possible 3x1 "T" on a Width g Grid, the Total Sum of all of the squares contained within it is 4n + g.

  1. T totals. In this investigation I aim to find out relationships between grid sizes ...

    Straight away, we can generalize that, When a T-Shape is translated vertically by a positive figure its T-Total is less than the original T-Total If we table these results along with all the vertical translation results from 41 to 14 (for v), we should easily see a pattern (on a

  2. To prove that out of town shopping is becoming increasingly popular with shoppers, and ...

    2) Sex: The main gender of people questioned were males making up 52% of the total. This was about an even split between male and female. This may have been because during the day more families are shopping together because they may not be working.

  1. Maths GCSE Coursework – T-Total

    + ( 2 x 5 ) 25 (55 - 30) 8 30 t = (5 x 8) + ( 2 x 5 ) N/a From this we can see that 25 is the "magic" number for vertical translations by +1 on a grid width of 5, from this I can see a link with the "magic"

  2. Objectives Investigate the relationship between ...

    182 T35 (180�) 231 +49 x = current T-total + 49 (where 'x' is the new T-total to be found...) As you can see rotating a further 90� adds '+49' to the current T-total, this of course leads me to believe that if I rotated a T-shape from a 0�

  1. For my investigation, I will be investigating if there is a relationship between t-total ...

    95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

  2. T-Total. I will take steps to find formulae for changing the position of the ...

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work