• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6
7. 7
7
8. 8
8
9. 9
9
10. 10
10
11. 11
11
12. 12
12
13. 13
13
• Level: GCSE
• Subject: Maths
• Word count: 2025

# The Fencing Problem.

Extracts from this document...

Introduction

Phil Bavister The Fencing Problem A farmer has exactly 100 metres of fencing and wants to fence off a plot of land. She is not concerned about the shape of the plot, but it must have a perimeter of 1000 m. She wishes to fence off the plot of land, which contains the maximum area. Investigate the shape, or shapes, that could be used to fence in the maximum area using exactly 1000 m of fencing each time. Firstly I thought about some of the shapes the possible and decided to calculate their areas in a logical order. So I decided to start with triangles before moving onto quadrilaterals, pentagons, hexagons and so on. Triangles To calculate the area of a triangle you must times half the base by the vertical height. Formulae A = b x h Equilateral Triangle There is more than one way to calculate the area of an equilateral triangle so I will demonstrate each of the three different ways. 1. A = x x x sin 60 = 48112.52 (to 2d.p.) 2. A = x - 2 x h h = sin 60 - - 3 = 48112.52 (to 2d.p.) 3. A = ab sin c = 48112.52 (to 2d.p.) Isosceles Triangle A = b x h To find the vertical height you must split the isosceles triangle into two separate right-angled triangles and use Pythagoras' Theorem. Pythagoras can only be used in right-angled triangles and uses two sides to find the third side. ...read more.

Middle

Parallelograms To find the area of a parallelogram you would do: A = b x h But I have found out that a rectangle with the same dimensions has a larger area. This is because a parallelogram is like a rectangle squashed on its side, this means it has a smaller height than rectangle, therefore producing a smaller area. Trapeziums The formula to find the area of a trapezium is: A = x h h = Example Calculating the average of the parallel sides = = =200 Calculating the distance between them (height) h = 350 -150 =200 =100 250sq - 100sq = 52,500 = 229.13 Area of Trapezium A = x h A = 200 x 229.13 A = 45825.76 Regular Polygons A regular polygon is a any shape made up of straight lines with each of its sides and angles being the same. To find the area of a regular polygon you must divide your polygon into several (number of sides) isosceles triangles. You can do this by drawing lines outwards from the centre point to each of the points on the perimeter. From here draw a perpendicular line vertically from top of the triangle to the base. In doing so you will have created two identical right angled triangles. From here using Pythagoras and Trigonometry you will be able to find the area of the right angled triangle. By simply multiplying this by two you will generate the area of the isosceles triangle. ...read more.

Conclusion

For this investigation we consider a circle having infinite sides. Here is a graph to show my results: There is also a spreadsheet to show all my results with regular polygons. After calculating each of the areas I tabulated them, this was so that I didn't lose them and it helped me identify any trends that were appearing. I found that it was easier to calculate areas using numerical values first and then translate these into and algebraic equation. When performing this investigation I made a number of mistakes. One of which was to make sure all my triangles were possible. Example But I learnt from this that the sum of sides a and c must greater than the base (in this case over 500m). I noticed from my table of results that as the area increased, the area of the internal triangles decreased. This can be explained because as the area increased so did the number of sides but the perimeter remained the same, meaning the triangles were getting smaller but they were having to be multiplied by larger numbers to find the total area. Evaluation I a satisfied with my findings because I have gathered good results and developed formulas. I believe that my results are valid and well presented. I feel I have used formulas and computers well to aid my investigation. Ways to extend this investigation in the future would be to: 1. Note : All figures in this document have been rounded to two decimal places but in the calculations were given their full numerical value. I couldn' t find a squared sign so instead I have used the notation - sq. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE Fencing Problem essays

1. ## My investigation is about a farmer who has exactly 1000 metres of fencing and ...

I will plot this information as well as the information from the other graph onto a new graph showing number of sides against area: This graph shows that my prediction is still correct as the area is getting larger as the amount of sides increase.

2. ## The Fencing Problem

h 450 50 3) h 425 75 4) h 400 100 5) h 375 125 6) h 350 150 7) h 325 175 8) h 300 200 ^ The graph has a smooth curve,; however, unlike the scalene triangles, the isosceles triangles results aren't "symmetrical"; they ascend to a point, and then decline with greater magnitude.

1. ## Fencing Problem

Formula for Regular Polygons While figuring out the areas for the polygons I created a formula using information I had received about the general rule about polygons, which is that all regular polygons can be split up into Isosceles triangles.

2. ## The Fencing Problem

I also know that each side of the pentagon = 1000/5=200m because it is a fifth of 1000m. I will use tangent to work out the height of the triangle because I know the adjacent (100m) and I want to find out the opposite.

1. ## t shape t toal

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 For the original T shape that is in the colour of yellow we know for a fact that the formula is t = 5x - 7g.

2. ## Geography Investigation: Residential Areas

I need to collect data on intangible factors which basically mean what the area feels like, the atmosphere and whether it's comfortable etc. To gather this data I will use a Bi Polar analysis which will rate the area on a scale from -5 to 5.

1. ## The fencing problem 5-6 pages

I will start of with the pentagon. Each side= 200m (1000/5) All corresponding angles are the same Exterior angle = 360/N or 360/5 = 72 Interior angles= 180-72=1080 (angles on a straight line) Like all regular shapes, a pentagon can be split up into equal triangles, which will be isosceles as two sides, and the corresponding angles are equal.

2. ## To investigate the ratio of Area:Perimeter for triangles (2) ...

There is therefore no maximum ratio. The ratio simply increases as the side length increases. For a comparison of the ratio, where we change the angles, we need to define the perimeter.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to
improve your own work