The Fencing Problem.

Authors Avatar

Maths Coursework - The Fencing Problem

Maths Coursework

The Fencing Problem

Aim:

A farmer has brought 1000 meters of fencing. With this fencing he wants to enclose an area of land. The farmer wants the fencing to enclose an area of the biggest size. I will investigate different shapes the fencing can make to achieve the largest area.

I am going to start investigating different shape rectangles because they are the easiest shapes to work with, the perimeter all of these shapes will have to be 1000 meters. Below are two rectangles (to scale) showing how different shapes with the same perimeter can have different areas. I will use a scale of 1cm: 100m.

1) 2)

400m (4cm)

Height 300m (3cm)

200m (2cm)

100m (1cm)

Width

I will work out the area of both rectangles by using the formula below. Both rectangles have a perimeter of 1000m

1)

Area of rectangle = height * width

Area of rectangle = 400m * 100m

Area of rectangle = 40000 m²

2)

Area of rectangle = height * width

Area of rectangle = 300m * 200m

Area of rectangle = 60000m²

As you can notice the areas of the rectangles 1 and 2 are different though the perimeters of both are 1000m.

Now I will put the areas widths and lengths of rectangles. I will change the value of the widths and go up in increments of 10m.

I will not use negative numbers for they are realistically impossible. Mathematically negative lengths are possible but I know that investigating this won’t give me the answers I want.

I will put my results in a table now.

Join now!

The highlighted row gives the biggest area; after I go past this row I start to repeat my self.

A square with the perimeter 1000m gives me the largest area. I will further investigate this because I was going up in increments of 10. I will go into the decimal widths and lengths.

Below is a table of results.

From this table I can see that the perfect square with the perimeter 1000m produces the largest area.

From this graph I can see that the highest point is on the 250m mark. The graph is a parabola and is symmetrical. ...

This is a preview of the whole essay