# The Fencing Problem.

Extracts from this document...

Introduction

### Fencing Problem – Math’s Coursework

Fencing Problem – Math’s Coursework

A farmer has exactly 1000 meters of fencing and wants to fence of a plot of level land. She is not concerned about the shape of the plot but it must have a perimeter of 1000 m. She wishes to fence of a plot of land that contains the maximum area. I am going to investigate which shape is best for this and why.

I am going to start by investigating the different rectangles; all that have a perimeter of 1000 meters. Below are 2 rectangles (not drawn to scale) showing how different shapes with the same perimeter can have different areas.

http://biketrader@www.

Middle

130

48100

380

120

45600

390

110

42900

400

100

40000

410

90

36900

420

80

33600

430

70

30100

440

60

26400

450

50

22500

460

40

18400

470

30

14100

480

20

9600

490

10

4900

Using this table I can draw a graph of height against area. This is on the next sheet.

As you can see, the graph has formed a parabola. According to the table and the graph, the rectangle with a base of 250m has the greatest area. This shape is also called a square.

Now that I have found that a square has the greatest area of the rectangles group, I am going to find the triangle with the largest area. I am only going to use isosceles triangles because if I know the base I can work out the other 2 lengths because they are the same. If the base is 200m long then I can subtract that from 1000 and divide it by two. This means that I can say that:

Side = (1000 – 200) / 2 = 400

To work out the area I need to know the height of the triangle. Tow ork out the height I can use Pythagoras’ Theorem.

Conclusion

As you can see from the graph, the line straightens out as the number of side’s increases. Because I am increasing the sides by large amounts and they are not changing I am going to see what the result is for a circle. Circles have an infinite number of sides, so I cannot find the area using the equation for the other shapes. I can find out the area by using π. To work out the circumference of the cir le the equation is πd. I can rearrange this so that diameter equals circumference/π. From that I can work out the area using the πr² equation.

DIAMETER = 1000 / π = 318.310

RADIUS = 318.310 / 2 = 159.155

AREA = π × 159.155² = 79577.472m²

From this I have concluded that a circle has the largest area when using a similar circumference. This means that the farmer should use a circle for her plot of land so that she can gain the maximum area

What impression did William Woodruff give of the visitors from America? How does the author use language to show the different reaction s of the family to the visitors?

487

204

152

488

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

## Found what you're looking for?

- Start learning 29% faster today
- 150,000+ documents available
- Just £6.99 a month