• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  • Level: GCSE
  • Subject: Maths
  • Word count: 1609

The Fencing Problem

Extracts from this document...

Introduction

Nick Murphy The Fencing Problem Mathematics GCSE In this piece of coursework I will be addressing the Fencing Problem. This is: A farmer has exactly 1000 meters of fencing; with it she wishes to fence off a plot of level land. She is not concerned about the shape of the plot, but it must have a perimeter of 1000m. What she does wish to do is fence off the plot of land, which contains the maximum area. Quadrilaterals I will start by looking at quadrilaterals. 50m 50 x 450 = 22500m� 45Om 400m 100m 100 x 400 = 40000m� 350m 150m 150 x 350 = 52500m� 200m 300m 200 x 300 = 60000m� 250m 250m 250 x 250 = 62500m� 250m As you can see I have drawn a large specturm of rectangles. I have noticed that the closer the size of the two measurements, the larger the area. Also, the closer the sizes are, the more like a square the shape becomes. In a rectangle, any two different length sides will add up to 500, because each side has an opposite with the same length. For example, in a 150 x 350 rectangle there are two sides opposite each other that are 150m long and two sides next to them that are opposite each other that are 350m long. ...read more.

Middle

+ h� 325m 325m 105625 - 30625 = 75000 h� = 75000 h = 273.9 350m 175m 1/2 base x height = 175 x 273.9 = 47932.5m� Hyp.� = h� + b� 333.3� = 166.7� + h� 111088.89 = 27788.89 + h� 111088.89 - 27788.89 = 83300 h� = 83300 h = 288.6 333.3m 333.3m 333.3m 333.3m 333.3m 166.7 1/2 base x height = 166.7 x 288.6 = 48109.6m� I have drawn here triangles with bases ranging from 50m to 350m going up in 50's. I have also drawn an equilateral triangle, as it is a regular triangle, and last time it was a regular quadrilateral that had the biggest area and it is the same in this case. Here is a base against area graph: As we can see the regular triangle has the largest area. Pentagon There are five sides to a pentagon, and it can be divided into five separate segments. The segments are isosceles triangles. We know the top angle is 72� by dividing 360 � 5, and therefore find the other two angles by 180 - 72 � 2 as the angles are equal. This equals 54� and because we can split an isosceles triangle into two right-angled triangles, I can use trigonometry to find the area. ...read more.

Conclusion

tan (90 - (180/n) = h 2 (1000/n) x h = Area of one segment 2 Area x n = Area of whole shape To prove this, here are some examples: Pentagon:- (1000/5) tan (90 - (180/5) = 138 2 (1000/5) x 138 = 13800 2 13800 x 5 = 69000m� Hexagon: - (1000/6) tan (90 - (180/6) = 144.3 2 (1000/6) x 144.3 = 12025 2 12025 x 6 = 72150m� Now that I have this equation, I can work out the area for an octagon and a nonagon. Octagon: (1000/8) tan (90 - (180/8) = 150.8 2 (1000/8) x 150.8 = 9425 2 9425 x 8 = 75400m� Nonagon: (1000/9) tan (90 - (180/9) = 152.6 2 (1000/9) x 152.6 = 8477.7 2 8477.7 x 9 = 76299.3m� Circle We have seen that as that as the number of sides increases, so does the area. Now I will find the area for a circle. Because a circle has an infinite number of sides, you cannot use any previous formula. To work out the area of a circle: 1000 = circumference pi 1000 = 318.3 � 2 = radius pi 318.3 � 2 = 159.15 pi x r� = Area pi x 159.15� = 79572.5 A = 79572.5m � In conclusion Here is a table and graph showing all my results for regular shapes: Therefore the circle has the greatest area with a 1000m circumference. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. The Fencing Problem

    assess this for accuracy by testing the two closest sides to 450. i.e. A = V500 (500-100) (500-449) (500-451) A = V(500 x 400 x 51 x 49) A = 22356.21m� (4dp) These results confirm that 22360.68 is the largest area.

  2. Fencing Problem

    310 1000 500 46540.31 390 305 305 1000 500 45731.55 After evaluating my second set of values, I noticed that the closer the dimensions got to an equilateral triangle the larger the area created. I am now going to investigate the values with the base of 320 m - 340

  1. The Fencing Problem

    For example, if the length of a parallelogram was 300m and the width of a parallelogram was 200m, I wouldn't be able to use the formula shown above. The formula to work out the perpendicular height is: h = w * sinx?

  2. Fencing Problem

    333.4 48155.79269 The maximum area the scalene triangle with a perimeter gives is when all three side lengths are close together. As the scalene triangle has side lengths that are all different lengths it will be harder for me to generate 3 numbers that are close to each other and add up to 1000.

  1. Math Coursework Fencing

    So I decided to investigate a general formula for all polygon shapes after pentagon. This will allow me to calculate large numbers of polygons very quickly and accurately. As doing it step by step, as shown above, will raise the chances of doing mistakes in my calculations.

  2. the fencing problem

    317.5 317.5 365 259.8 47414 1000 315 315 370 254.9 47165 1000 312.5 312.5 375 250 46875 1000 310 310 380 244.9 46540 1000 307.5 307.5 385 239.7 46159 1000 305 305 390 234.5 45731 1000 302.5 302.5 395 229.1 45252 1000 300 300 400 223.6 44721 1000 In this

  1. Maths Fencing Coursework

    SIN 110�= x 200 200 SIN 110� = x x= 187.9385242 x 200 Area=37587.70483 12. SIN 120�= x 200 200 SIN 120� = x x= 173.2050808 x 200 Area=34641.01615 13. SIN 130�= x 200 200 SIN 130� = x x= 153.2088886 x 200 Area= 30641.77772 14.

  2. The Fencing Problem

    However, it increases at a decreasing rate. This is because with each area rise, the amount it rises by decreases each time. General formula Now that I know that as the amount of sides increases, the area increases, I can write a general formula on how to calculate any regular polygon with an n number of sides.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work