• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The fencing problem.

Extracts from this document...

Introduction

Maths Coursework: The Fencing Problem

Varun Gupta

There is a need to make a fence that is 1000m long. The area inside the fence has to have the maximum area. I am investigating which shape would give this.

Triangles: Isosceles

To work out the area I need to know the height of the triangle. To work out the height I have to cut the triangle in half (which is why there is a line in the middle of the triangle). Then to work out the height I can use Pythagoras’ theorem:

a² + b² = c²

a² + 200² = 300²

a² = 300² - 200²

a² = 90,000 – 40,000

a² = 50,000

a = √50,000

height = 223.607m (3sf)

Now that I have calculated the height of the triangle I can now find the area of it.

...read more.

Middle

316.228

47434.165

350

325.0

273.861

47925.724

400

300.0

223.607

44721.360

Looking at these results, it seems like as the base increases, the area also increases. However as the base is increasing, the height is decreasing. This makes the area decrease back again. The area is largest somewhere around the 300m-400m so I’m going to zoom in around that point and do exactly the same as I did in the table above except this time I am going to go up by 10m.

BASE(m)

EACH SIDE(m)

HEIGHT(m)

AREA(m²)

310

345.0

308.221

47774.209

320

340.0

300.000

48000.000

330

335.0

291.548

48105.353

340

330.0

282.843

48083.261

350

325.0

273.861

47925.724

...read more.

Conclusion

Triangles: Scalene

Looking at this diagram, there is no need to draw out tables to find out whether or not a scalene triangle is bigger than an equilateral in terms of area. Logically, we know that no matter how high, or how far the scalene triangles go, they will never have the same area as an equilateral (provided that the perimeters for all of the triangles add up to 1000m) and the diagram above proves it all. In conclusion, my investigation has shown that out of all the three types of triangle, equilateral has the largest surface area.

...read more.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. The Fencing Problem

    x h]} x 100 Regular Polygons - Chiliagon (1000-sided-shape) As you can see, I have not incorporated a diagram of a Hectogon because of its close resemblance to a circle (at this scale factor). However, the calculations of the base and height of the triangles are shown, and of course the calculations.

  2. Fencing problem.

    I have shown the shape that I shall be investigating below: AB + BC + CD + DE + EF + FG + GH + HI + IA = 1000m Length of each side = Total perimeter � Number of sides Length of each side = 1000 � 9 =

  1. Fencing Problem

    1000 m Instead of drawing and working out the area of each parallelogram on Microsoft Word I have formulated a spreadsheet (with a formula) with the aid of Microsoft Excel to speed up the lengthy process of working out the area of parallelograms.

  2. Maths Coursework - Beyond Pythagoras

    = 546 Triangle 7 Shortest side = ( 2 x 7 ) + 1 = 15 Middle side = 2( 7 x 7 ) + ( 2 x 7 ) = 98 + 14 = 112 Hypotenuse = 2( 7 x 7 )

  1. Geography Investigation: Residential Areas

    After calculating spearman's rank for the two sets of data I have found that there is in fact a weak positive correlation between the two. This means that the lower the intangible score the less time occupants have lived in the house.

  2. Fencing Problem - Math's Coursework.

    Tow ork out the height I can use Pythagoras' Theorem. Below is the formula and area when using a base of 200m. H� = h� - a� H� = 400� - 100� H� = 160000 - 10000 H� = 150000 H = 387.298 1/2 � 200 � 387.298 = 38729.833m wweb ebw stebebud eeb ebnt ceb enebtral ebcoeb uk.

  1. The Fencing Problem

    I have now decided to see whether it makes any difference to the area if you switch the height with the base. I will try this out on the first and second rectangles. I will not try it on the square, as all of its sides are the same any way.

  2. The Fencing Problem

    1000 60000 310 190 120 1000 58900 320 180 140 1000 57600 330 170 160 1000 56100 340 160 180 1000 54400 350 150 200 1000 52500 360 140 220 wwee eew steeeeud eee eent cee eneetral eecoee uk! 1000 50400 370 130 240 1000 48100 380 120 260 1000

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work