• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18
  19. 19
    19
  20. 20
    20
  • Level: GCSE
  • Subject: Maths
  • Word count: 2615

The object of this exercise is to face the arrowhead in the opposite direction with minimum moves.

Extracts from this document...

Introduction

MOVING ARROW HEAD

The object of this exercise is to face the arrowhead in the opposite direction with minimum moves.

Diagram 1

image00.png

image01.pngimage00.png

image01.pngimage00.pngimage01.png

image00.pngimage01.pngimage01.pngimage00.png

By observation we see the arrowhead is in the shape of equilateral triangle. It’s counters are round and arranged in such a way that, by increasing the base layer by one counter, so that the new base layer contains one more (b+1) with respect to previous one. Each time the base is increased, the arrowhead maintains it’s equilateral shape.

In any triangle we can find the minimum moves needed to face the triangle in the opposite direction.

We will see a pattern generating when we move the counters so that the arrow head faces in the opposite direction. We will investigate the structure in which these patterns are generated.

...read more.

Middle

4image37.png

     12                   78                   26

                                                              }                    4image37.png

     13                   91                   30

                                                              }                    5image38.png

     14                  105                  35

                                                              }                    5

     15                  120                  40

image34.png

From the above table we notice that the difference between each move is constant for three moves, then increases by one after every third move.

So we need to do a further Investigation by comparing the counters inside the hexagon and counters the hexagon (the corners of the triangle).

Comparing counters inside hexagon

And counters outside hexagon

 TABLE 2

image02.pngimage02.pngimage39.pngimage39.pngimage02.pngimage02.pngimage40.pngimage02.png

Base,b  Total number          [Counters          [Counters  =  Movesimage03.png

of counters, nbinside                outside

hexagon]           hexagon]    

image04.png

    4         10                                            7       3                   =  4   (one above correct move)image03.png

    5         15  (divisible by 3)                10        5                   =  5image03.png

    6         21  (divisible by 3)                14        7                   =  7image03.png

    7         28                                         19        9                   =  10   (one above correct move) image03.png

    8         36  (divisible by 3)                24        12                 =  12  image03.png

    9         45  (divisible by 3)                30        15                 =   15image03.png

    10       55                                         37        18                 =   19   (one above correct move)image03.png

    11       66  (divisible by 3)                44        22                 =   22image03.png

    12       78  (divisible by 3)                52        26                 =   26  

    13       91                                         61        30                 =   31   (one above correct move)image03.png

    14      105 (divisible by 3)                70       35                  =   35image03.png

    15      120 (divisible by 3)                80       40                  =   40image03.png

image04.pngimage06.png

My deduction from the above table, is that the number of counters which are a multiple of 3, give the correct minimum number of moves. Other number of counters which are not multiple of 3, give 1 above the correct minimum number of moves.

From this information, I am going to try derive a formula to give the minimum number of moves.

Deriving an equation for minimum number of moves

Base,b=1,2,3,4,…..

Number of counters, nb= b+(b-1)+(b-2)+(b-3)+…….+1

Number of moves=m

If nb is divisible by 3,then               (If nb mod 3 = 0)

          m = nb/3

else

          m = (nb-1)/3

Example                                                                Example

b =8                                                                      b =13

nb =8+7+6+5+4=3+2+1 =36                                  nb =13+12+11+10+9+8+7+6+5+4+3+2+1 = 91

nb is divisible by 3, thereforen is not divisible by 3,therefore

m =nb/3m = (nb-1)/3

m = 36/3 =12                                                          m = (91-1)3 = 30      

note:=  nb = 1+2+3+4+…+(b-1)+ b

Therefore, we use ‘Arithmetic Progression’. Where first term, a =1, common difference, d =1

nb = (b/2) *(2a + (b-1)d) = [b *(b+1)] / 2                    

image07.pngimage07.pngimage08.png

Therefore,

...read more.

Conclusion

 The next base is b’=3c+1,we have to prove equation (2)

 m’= (b’-1)(b+2)  is also true.

                6

 At this stage one more base is added to the top triangle from the case where all 3 corner triangle bases were equal, but at this stage the top corner triangle has increased by one base.

 Therefore adding c to both sides

m+c=b(b+1) + c

              6

substituting 3c into bsince b=3c

m+c=b(b+1) + c

                                                            6

m+c=3c(3c+1) +c = 3c(3c+1)+6c

                                                             6                      6

                              m+c=3c(3c+3)

                                                             6

                           where b’=3c+1

 But we know b’=3c+1 , since 3c=(3c+1)-1 and 3c+3=(3c+1)+2        

Since 3c=b’–1

b’    –1

For the equation m+c=(bT-1)(bT+2)= m’

2

 we get the multiples of the numerator

 So this proves that if equation (1) works for b=3c, then equation (2) works for the next base

 b’=3c+1  

Assuming b’=3c+1 and equation m’=[(b-1)(b+2)]/6 are true.

Need to prove for the next base, b=b+1 is true for m=[b(b+1)]/6

 Again the moves, m is formed from m’ by adding c+1 counters to the top triangle.

 m’+c+1=(b-1)(b+2) + c+1  

                          6

replacing bwith 3c+1m’+c+1=(3c+2)(c+1) = m

                                                                             2

 Using assumption b=3c+1 and b=b’+1

We get

b= b(b+1)

                         6

We have proved that if equation(2) works for any b=3c+1, then equation(3) will work for the b’.

Prove that  b=3c+2

 If we look at the pattern of the cycle,3c, 3c+1, 3c+2, whilst in our induction we add c+1 to our equations ,according to this principle we assume the next cyclic move would be 3c+3.

...read more.

This student written piece of work is one of many that can be found in our GCSE Fencing Problem section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Fencing Problem essays

  1. Geography Investigation: Residential Areas

    Secondly, I wanted to know if these areas were more likely to live with a family/children. I have done this using a doughnut chart. It is basically the same as a pie chart but varies in visualization so it is easier for comparison between the pie chart for age and this for who the residents occupy their home with.

  2. Block sequences

    2 8 4 = 4 3 12 4 = 8 4 16 4 = 12 5 20 4 = 16 The Nth term is 4N - 4 I will now work out the Nth term for the number of unshaded squares Number of unshaded squares Diagram Number of squares 1

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work