• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

An experiment investigating the factors which alter the rate of the catalysed decomposition of Hydrogen Peroxide.

Extracts from this document...

Introduction

Jessica Hartley Centre no: 64335 Candidate no: 6107 An experiment investigating the factors which alter the rate of the catalysed decomposition of Hydrogen Peroxide. Aim To investigate one factor that alters the rate of the catalyzed decomposition of Hydrogen Peroxide. Introduction Particles can only react if they collide with enough energy to break existing bonds which will allow for the reaction to take place. This theory is called The Collision Theory. There are four factors affecting the rate of a chemical reaction. These are: Temperature:- Increasing the temperature will cause the particles to move faster, with more energy. They will therefore collide more often and with greater energy. These two things mean there are more successful collisions per second and therefore a faster rate of reaction. Concentration:- Increasing the concentration of a reactant simply means there are more particles which may collide and so react. More collisions means a faster reaction. Surface area:- Using powdered reactants instead of a lump means the surface area is greater, which means a greater area of reactant is exposed and so available for collision. More collisions means a faster reaction. Catalysts:- Use of catalysts means that particles having only minimal, energy may react. If s of catalysts work because one of the reactants is fixed to the surface. This makes the chance of a reaction more likely. ...read more.

Middle

8 0.24 25 41 38 10 10 0.24 25 39 56 8 12 0.24 25 36 75 6 14 0.24 25 35 129 Fair test I've decided I shall keep the same concentrations of the solutions. If I used a lower concentration i.e. 4ml of solution and 16ml of distilled water the reaction would have been too slow to measure accurately. If I had used 20ml of water the reaction wouldn't have taken place at all because a compound is needed to react with a catalyst. I've also decided to keep the collection of 100ml of oxygen because if it was smaller it may not be as accurate. For my next investigation I shall use a smaller amount of Manganese (IV) Oxide which has been advised. This is because the reaction is happening too quickly Apparatus * 25ml Measuring Cylinder * 100ml Measuring Cylinder * A Conical Flask * A Delivery Tube with Bung * A Water basin * Top Pan Balance * Plastic Dish * A Stop Clock * Hydrogen Peroxide Solution * Distilled water * Manganese (IV) Oxide Method In this investigation I shall make three sets of 8 different concentrations of the hydrogen peroxide solution by adding different amounts of water which all equal 20ml. To this I shall add equal amounts of Manganese (IV) oxide (roughly 0.2 grams), this shall make it a fair test. ...read more.

Conclusion

Hydrogen Peroxide Solution (ml) Distilled Water (ml) Manganese (IV) Oxide (g) Temperature before (�C) Temperature after (�C) Time taken to obtain 100cm� of Oxygen (s) 20 0 0.20 23 45 19 18 2 0.20 22 44 21 16 4 0.20 23 42 28 14 6 0.20 21 39 32 12 8 0.20 22 37 40 10 10 0.20 22 35 57 8 12 0.20 23 32 71 6 14 0.20 20 29 147 Average results (figure 1) Hydrogen Peroxide Solution (ml) Distilled Water (ml) Manganese (IV) Oxide (g) Temperature before (�C) Temperature after (�C) Time taken to obtain 100cm� of Oxygen (s) 20 0 0.20 23 46 17 18 2 0.20 22 44 21 16 4 0.20 23 41 25 14 6 0.20 22 39 27 12 8 0.20 21 37 33 10 10 0.20 21 36 49 8 12 0.20 22 33 64 6 14 0.20 20 28 120 Conclusion The evidence suggests that the more manganese (IV) oxide added the quicker the reaction becomes. This is because there is a greater surface area. Also the less Hydrogen peroxide used the slower the reaction becomes. The time taken for the first two reactions is slower than the third set of results this is because the catalyst speeds up the reaction time. Overall I think this experiment went very well but it probably could have been done fairer and more accurately. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Patterns of Behaviour section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Patterns of Behaviour essays

  1. Factors Affecting the Rate of Catalytic Decomposition of Hydrogen Peroxide.

    Volume of H2O2 did not affect the preliminary experiment results hugely (apart from final amount of O2 gas given off) and so it is most probably not suitable as a variable. As all of the above variables are not suitable to be used as input variables (this was decided using

  2. Investigate the factors, which affect the rate of decomposition of Hydrogen Peroxide.

    When I had collected 50cm3 of Oxygen in the measuring cylinder, I stopped the clock. I repeated this process at 2 different temperatures, 20? and 60?. Because of the results I got (see table below) I repeated the experiment, this time with only 0.5g of catalyst.

  1. Find out how the rate of hydrolysis of an organic halogen compound depends on ...

    But the overall rate equation for the reaction can only be found by experiment. The mechanism of enzyme-catalysed reactions: When the substrate concentration is low, the rate equation for the reaction, S enzyme P substrate product is, rate = k [E] [S] where [E] is the concentration of the enzyme.

  2. Investigate the rate of a catalysed reaction, when altering the temperature of the solution ...

    Because there are 23 known amino acids, the number of amino acids in a chain can vary. Amino acids are made of different elements and so they could each have a slightly different charge. 2) Secondary Structure The secondary structure is the folding of the chain(primary structure)

  1. Investigation of the effect of the concentration of hydrogen peroxide on the rate of ...

    4 21 3 13 0.4M 4 11 3 10 Having done the second experiment with a different batch of Hydrogen Peroxide I concluded that the second batch of Hydrogen Peroxide was less concentrated than the first and thus the results were lower.

  2. Studying the rate of reaction of the catalyst decomposition of hydrogen peroxide.

    of the catalyst because, some times it was to quick to record the time. Results of final experiment: The table below will show the results of our experiment using 0.1g of catalyst and 20ml of hydrogen peroxide. Concentration (%) 1st Repeat (Seconds)

  1. The Effect of Catalase in the Breakdown of Hydrogen Peroxide

    Any amount of concentration can be used to observe its position and effect on the rate of reaction. However; if it exceeds the 10ml amount, the results would become unfair and can affect my final results. Temperature All the water used should all be at the same temperature.

  2. To Investigate the Effect of Manganese IV Oxide on the rate of decomposition of ...

    As was mentioned previously, the variable that will be varied will be the amount of catalyst. The former will be investigated by testing five different weights of catalyst: 0.2g, 0.4g, 0.6g, 0.8g and 1.0g. The amount of hydrogen peroxide to be used will be 20ml.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work