• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Chemistry - What is the atomic mass of lithium? Method one: The first method involves reacting a known mass of lithium with a known volume of distilled wa

Extracts from this document...


Chemistry - What is the atomic mass of lithium? Method one: The first method involves reacting a known mass of lithium with a known volume of distilled water and measuring the quantity of hydrogen which is produced. I'll do this experiment only once because I am confident with my ability of measuring accurately and any error I performed once, I would no doubt repeat it every time. I will assume throughout that 1mole of the hydrogen I produced occupies 24000cm� at R.T.P Results: From the reaction between 100cm� of distilled water and 0.10g of lithium I collected 158cm� of hydrogen. Treatment of results: I collected 158cm� of hydrogen gas. If one mole of gas occupies 24000cm� the I can find how many moles I have by using Method 2: This second method uses one of the products from the previous experiment and as that is an alkali a titration can determine the concentration of the solution of lithium hydroxide. These are the results I found when I titrated 25.0ml of the unknown concentration of LiOH with 0.100moldm� of hydrochloric acid. 1. ...read more.


These are obviously not correct as the value found by professional scientists is 6.94 . Many contributing factors are involved in the inaccuracy of my results. In the first method, problems come from many sources, the product, hydrogen, is collected and it passes through water. Some hydrogen may well dissolve into the water. I don't not know how much this effects the outcome but I would say very little, but still, to minimise the effect how the gas is collected has on the results a large gas syringe would be useful. Also being able to measure the quantities of my reactants to a greater degree of accuracy would help. But in total this would have little effect. The majority of error comes from my own error and not being accurate enough with my measuring and one important factor is the fact when placing the bung the point at which the reaction is most violent, the start, some of the hydrogen wouldn't be caught. ...read more.


Hazardous substances: Lithium - Care must be taken, lithium is an highly reactive solid, to extinguish use methods to smother lithium such as limestone or dry clay. During a fire poisonous gases are produced such as lithium oxide. Breathing in lithium particles can cause much distress with shortness of breath and coughing present. Contact with the skin can cause irritation and burns. (Information used from: http://www.state.nj.us/health/eoh/rtkweb/1119.pdf .) Lithium hydroxide - This non explosive substance is extremely corrosive and dangerous to the respiratory system and the same the he digestive system, it causes internal burns on ingestion and external burns on contact with skin. (Information from: http://www.ilo.org/public/english/protection/safework/cis/products/icsc/dtasht/_icsc01/icsc0913.htm.) Hydrochloric acid - Very harmful, there are severe consequence involved in the inhalation of Hydrochloric acid. The acid causes great ad serious discomfort within the respiratory system. Inhalation can causes irritation to the trachea and lungs. Consumption as expected causes vomiting, nausea and diarrhoea. Contact with the skin an cause burning and ulcers. (Information collected from: http://www.epa.gov/ttn/atw/hlthef/hydrochl.html .) ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Relative atomic Mass of Lithium

    Having worked out all the percentage uncertainties of all my measurements I can now identify the balance as the most significant measurement error as it has the largest uncertainty. Another thing that can be minimized within this experiment is the procedure errors.

  2. Determination of the relative atomic mass of lithium.

    mol of Lithium = 0.09g 0.0132 mol of Lithium = 0.09g 1 mol of Lithium = 0.09g 0.132g = 6.8g Thus the Relative Atomic Mass of Lithium is 6.8g mol-1 from experiment 1 Experiment 2 The results for the titration's are as follows; 28.3 cm3, 27.0 cm3 and 27.0 cm3.

  1. to determine the relative atomic mass of lithium. We will be doing this via ...

    This is calculated by the percentage error as below: Percentage error = Absolute error x 100 Value of quantity The main sources of error in procedure and in measurements are random errors and systematic errors. These are: * Random errors are associated with most measurements.

  2. Determining the atomic mass of lithium from method one. After setting up my apparatus, ...

    I then went on to put the Lithium into the distilled water in the conical flask and place the bung immediately to a void any lose of Hydrogen gas. I then took the volume of the hydrogen produced which was 150.000cm3.

  1. Determination of the Relative Atomic mass of Lithium

    on top of the conical flask, and during this time some hydrogen gas may have escaped, the extent of the gas loss depends on how close the bung was held to the flask, and also if there was any human error and for example the bung was dropped.

  2. Determine the relative atomic mass of lithium.

    0.08 = mr 0.0125 mr = 6.40 the relative atomic mass of lithium according to this experiment is 64 Method 2 : Titration Apparatus 1 x Stand 1 x Clamp 1 x Burette 1 x Funnel 1 x Pipette filler 1 x Pipette (25cm�)

  1. Investigation to determine the relative atomic mass of lithium

    I started to release the HCl down drop by drop for more accurate results. Once this is all done I repeated the results twice more (for accuracy) and remembering to swirl it after each drop I will repeat this experiment until I am confident that my results prove to be correct.

  2. Determination Of The Atomic mass of Lithium.

    The ratio of Lithium hydroxide to Hydrochloric acid is 1:1 So the number of moles used in the titration reaction is the same 0.004375 mol dm3 Calculate the number of moles of Lithium Hydroxide present in 100cm3 of the solution from method 1.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work