• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Determination of the relative atomic mass of lithium

Extracts from this document...

Introduction

Determination of the relative atomic mass of lithium To calculate the relative atomic mass of lithium I am going to use two methods. Method 1: I am going to measure the volume of hydrogen produced when a known mass of lithium reacts with H2O Method 2: I will now titrate the solution of lithium hydroxide produced. Method 1 results Mass of lithium (g) Volume of hydrogen produced (cm3) 1: 0.09 173 2: 0.09 176 Treatment of results Assuming that one mole of gas occupies 24000cm3 at room temperature and pressure. 2Li (s) + 2H2O (l) � 2LiOH (aq) H2 (g) I am going to calculate the number of moles of hydrogen, H2 that I had collected: No. ...read more.

Middle

titration is: LiOH + HCl � LiCl +H2O 1 mole of LiOH + 1 mole of HCl give us 1 mole of LiCl + 1 mole of H2O Now I'm going to calculate the no. of moles of HCl used in the titration: No. of moles = ( m(0.100) x v (40) ) � 1000 LiOH = 25 cm3 HCl = 0.100dm-3 = 4.0 � 1000 = 0.004 moles Now I will deduce the number of moles of LiOH used in the titration This is the same number of moles of HCl used in the titration = 0.004 To calculate the number of moles of LiOH, I will have to calculate how many moles present in 100cm3 of the solution from method 1: 100cm3 � 0.004 x 4 = 0.016 moles Now I am going to use the original mass of lithium and this result so calculate the relative atomic mass (RAM) ...read more.

Conclusion

I read wrong because I have checked my calculations so it must have been in either the titration of the amount of hydrogen I collected. Whilst doing the experiment I encountered other problems as well: : The oil that the lithium had soaked up could have affected the mass of the lithium/ 2: The gas inside the measuring cylinder could have been released and therefore giving me the wrong amount and the wrong calculations. 3: during the titration stage I could have been more accurate by having some help to take down the readings while I stop the titration instead of me doing both. 4: The pipette is not 100% accurate in its measurements so that also gave me an in accurate reading. ?? ?? ?? ?? Lee Palser centre no: 10534 Chemistry candidate no: 9110 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Determination of the relative atomic mass of lithium.

    + HCl(aq) LiCl(aq) + H2O(l) Experiment 1 1. I will arranged the apparatus as shown in fig. 1a 2. I will measure 100cm3 of distilled water using a burette - 2 x 50 cm3 and empty it into the conical flask.

  2. Determine the relative atomic mass of lithium.

    Like sodium hydroxide and potassium hydroxide. If inhalation of lithium hydroxide occurs, remove source of contamination or move victim to fresh air and seek medical attention. Lithium hydroxide can be very irritating to the skin. Solid lithium hydroxide or concentrated solutions may cause severe tissue damage.

  1. Determination of the relative atomic mass of lithium.

    of the delivery tube under the cylinder, air from the tube would escape and a few small bubbles may well travel into the cylinder. This would mean that the cylinder is not full of water and in fact have a little gas in it.

  2. To find the relative atomic mass of a sample of Lithium.

    The 25cm3 pipette measures exactly at 20?C. When measuring liquids the meniscus must be taken into account, due to surface tension the surface within the pipette burette etc is curved. The meniscus is always lined up with the bottom touching the line and the line being held at eye level so that it is a solid line

  1. to determine the relative atomic mass of lithium. We will be doing this via ...

    using the mole ratio. The mole ratio of LiOH to HCl is 1:1. This means that the number of moles of LiOH is the same as the number of moles of HCl. So, the number of moles of LiOH is 1.480 x 10-3. We now need to calculate the number of moles of LiOH present in 100cm3 of the solution.

  2. To determine the relative atomic mass of Lithium

    LiOH that I made and I shake it for about ten times for complete mix, I then took a 25cm3 pipette and rinse it with some LiOH and then pipette 25cm3 of LiOH from the same bottle into the clean conical flask.

  1. Determination of the Relative Atomic Mass of Lithium

    I will repeat the titration twice more. Analysis Experiment 1 I used 100cm3 of H2O which reacted with 0.09g of Lithium to produce 158 cm3 H2 gas. Since 1 mole of gas at room temperature and pressure occupies 24 dm3: Moles of H2 = 158 x 10-3 = 6.6

  2. Determination of the relative atomic mass of Lithium

    * As hydrogen was in a ratio of 1 : 2, I had to multiply the number of mols (0.00775) by 2 to get an answer of 0.0155 mols. * And lastly, to find the relative atomic mass of Lithium, I had to substitute the mass (0.11g)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work