• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Determination of the relative atomic mass of lithium

Extracts from this document...

Introduction

Determination of the relative atomic mass of lithium To calculate the relative atomic mass of lithium I am going to use two methods. Method 1: I am going to measure the volume of hydrogen produced when a known mass of lithium reacts with H2O Method 2: I will now titrate the solution of lithium hydroxide produced. Method 1 results Mass of lithium (g) Volume of hydrogen produced (cm3) 1: 0.09 173 2: 0.09 176 Treatment of results Assuming that one mole of gas occupies 24000cm3 at room temperature and pressure. 2Li (s) + 2H2O (l) � 2LiOH (aq) H2 (g) I am going to calculate the number of moles of hydrogen, H2 that I had collected: No. ...read more.

Middle

titration is: LiOH + HCl � LiCl +H2O 1 mole of LiOH + 1 mole of HCl give us 1 mole of LiCl + 1 mole of H2O Now I'm going to calculate the no. of moles of HCl used in the titration: No. of moles = ( m(0.100) x v (40) ) � 1000 LiOH = 25 cm3 HCl = 0.100dm-3 = 4.0 � 1000 = 0.004 moles Now I will deduce the number of moles of LiOH used in the titration This is the same number of moles of HCl used in the titration = 0.004 To calculate the number of moles of LiOH, I will have to calculate how many moles present in 100cm3 of the solution from method 1: 100cm3 � 0.004 x 4 = 0.016 moles Now I am going to use the original mass of lithium and this result so calculate the relative atomic mass (RAM) ...read more.

Conclusion

I read wrong because I have checked my calculations so it must have been in either the titration of the amount of hydrogen I collected. Whilst doing the experiment I encountered other problems as well: : The oil that the lithium had soaked up could have affected the mass of the lithium/ 2: The gas inside the measuring cylinder could have been released and therefore giving me the wrong amount and the wrong calculations. 3: during the titration stage I could have been more accurate by having some help to take down the readings while I stop the titration instead of me doing both. 4: The pipette is not 100% accurate in its measurements so that also gave me an in accurate reading. ?? ?? ?? ?? Lee Palser centre no: 10534 Chemistry candidate no: 9110 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Marked by a teacher

    Enthalpy of Neutralisation.

    3 star(s)

    So if a solution is more concentrated more particles are bumping into each other. Which makes more collisions so there are more reactions between particles, therefore more reactants that produce more water. When water is produced there bonds release energy therefore the more water produced by the reacting OH- and H+ ions the bigger the temperature rise.

  2. The Determination of an Equilibrium Constant.

    CH3COOC2H5 = 0.92 * 75 = 69 g Molecular mass of CH3COOC2H5 = 12 + 3 + 12 + 32 + 24 + 5 = 88 g/mol Number of moles of CH3COOC2H5 = 69 / 88 = 0.784 mole * Mass of H2O = 1 * 100 = 25 g

  1. Determination of the relative atomic mass of lithium.

    + HCl(aq) LiCl(aq) + H2O(l) Experiment 1 1. I will arranged the apparatus as shown in fig. 1a 2. I will measure 100cm3 of distilled water using a burette - 2 x 50 cm3 and empty it into the conical flask.

  2. To find the relative atomic mass of a sample of Lithium.

    Overall the second experiment was much more accurate then the first shown by the difference in percentage error. However both had in built inaccuracies in the form of the oil on the Li sample and the purity of the sample.

  1. Determination of the relative atomic mass of Lithium

    So I used this formula in the equation below to complete the aims listed above: LiOH (aq) + HCl (aq) LiCl (aq) + H2O (l) N = CV = 0.100 moldm3 X 0.0386 dm3 = 0.00386 mols 1 : 1 0.00386mols 0.00386 mols * To work out the number of

  2. to determine the relative atomic mass of lithium. We will be doing this via ...

    = 0.099 = 6.6892 Number of moles 0.0148 So the Relative Atomic Mass of Lithium is 6.69 (to 3 significant figures). Hazard Of Chemicals: Lithium Metal: Flammable: The metal burns in air. It reacts violently with water and acids, liberating a highly flammable gas (hydrogen*).

  1. Determination of the relative atomic mass of Lithium

    cm Weight of Lithium sample 0.042 grams Calculations Average Titre - 15.35 X 0.1 = 0.001535 1000 0.001535 X 4 = 0.00614 0.042 = 6.84 0.00614 2nd Attempt Rough Titration 1st Titration 2nd Titration Initial Volume 0.00 cm 15.00 cm 30.20 cm Final Volume 15.00 cm 30.20 cm 45.40 cm

  2. Determination of the Relative Atomic mass of Lithium

    10 10.95 Concentration (mol dm-3) 0.1 Moles 0.001095 0.001095 The Moles of HCl is decided by the equation: Moles = concentration / volume (in dm3) so therefore in this case the equation would be: 0.1 x (10.95 / 1000) = 0.001095 moles and since the HCl and LiOH are in

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work